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ABSTRACT

The final repart describes thT accomplishments of six major projects

undertaken_as part of this funded research program. first, a

comprehensivelmathematical and statistical analzsis of the problems

caused by efrors of measurementA.n linear models for asSessing change is

presented. Results from several disciplines,are intevated, and'their

implications for.studies of educational change discussed.' Second, a

general matrix reprasefitation of the problem is formulated,_and several

new analytic resulta are proved concerning the parameters which affect
,

,

1

farm of a FORTRAN program which can be used by researchers to improve the..

design of investigations of 'Change in order to minimize the likelihood of-

potential errors of-inference. Fourth, we undertake a comprehensive

review of statistical methods which have been developed la several

aisCiplines to'estimate the parameters of true change bycorrecting the

observed-score,regression estimates,for unreliability. The methods are

V_

bias in observed-score regression statistics. We derive equations which

express the bias in OLS estimators asja function of co7ariances among

the true scores, covariances among the measurement errors, and sample

size. Third, the results of the first two projects were emploYed to

create-an algorithm for assessiag the potential bias due to the

unreliability of measures. The algorithm has been implemented in the

formulated in a common algebra.and evaluated .in terms af bias and power.

Fifth, the report describes the results of a series of Monte'Carlo,
.0

experiments which.evaluated the performance of.several methlds which

utilize a priori information about the variance structure.of the errors



%

4

of-*asurement to estimate the parameters of the true-score-regressions.

The advantages and general suvriority of estimatoN proposed by Fuller

and his colleagues are discussed. Sixth, a special type of model-the

linear functional relation 0,FR)--is discussed in terms of its relevance

for the study of change. A variety of models which have been.devised in

pSychometriCsamd.econometrics for estimating the parameters of LFRs are

compared and recomiendations about the bestl,methods to use are made. An

extensive bibliography and-computer programs are included as ppendices.

43i
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CHAPTER I

INTIIDDUCTION AND EXECUTIVE SUMMARY

OVERVIEW

4

This report describes the results of a largescale research program

on the effects of measurement error on linear statistical models for '

analyzing paychoaducational change in quasiexperimental and

nonexperimental studies. As components of the research program, six

project's were undertaken that analyzed the bias in observedicore

regression estimators and evaluated the performance of statistical models

Fhich estimate the parameters of the tr, escore regressions by using

inforiation abouOthe variance st.pucture of the errors of measurement.

Each project,constitutes a separate chapter in the.final report. The

qtatistical.results developed in each chapter are general in that they

apply with equal validity to alllinear models analyses, especially

multiple regression/correlation (MRC) and analysis of covariance

l
(ANCOVA),. However, the results. and their. implications are discussed

primarily with respect'to studies of psychological and educational

growth.. The usefulness'of the findingafor educational researchers is
,

described In considerable detail. Each chapter offers specific

recommendations concerning ways in which researChers can guard against

making errors of inference about the determinants of change because.of

errors of measurement. We believe that the results of thia researoh

program, if utilized by investigators, can sUbstantially improve the

quality of studies of edueatidhai change.

In the first project (Chapter II),we present a cOmprehensive-
.

matheMatical and statistical analysis of the problemacaused by'errors of



measuremerit'inainear model's for assessing change. Results from several
,

disciplines are integrated; and their implications for studies of

educational change are-Ndiscusied. 'The second:oproject (Chapter V)

provides a general MatriX repregentation of the problem and proves

several new analytic results-concerning the.parameters which affect. bias

. ,
ig observed-score regression statistics. We derive equations which

i

express the bias in'ordinary least squares (01.S) estimators as a function
. I i
of the covariances amcing the trim scores, covariances among the errors of

, \
i .

measurement, and sample size. The 'objective of the thlid pftject
. r

(Chapter VI) was .to devise an algorithM for assessing the potential bias' f

I

1

resulting-from the unreliability of measures.' The algorithm, which has I
...- .

. ;

.9 ,

been implm
i

ented in the orm of a FORTRAN program, can be used:by
. .

)

researcheri to'improve the design ef regearch projects/and program
aa-

evaluations in order to minimize the likelihood of potential errors of P

inferences about the'deterMinants of-change. As part of the fourth

A !

project (Chapter III),we undertook a ccimprehensive reviewof the

stiatistical methods which have been developed in several disciplines to

estiiate the parameters of true change by cprrecting the observed-score

regression estimates for unreliability. The methods are formulated in a

common algebra and- aluated in terms of bias and power.. The fifth

project (Chapter VII) cone.sted of a series of Monte Carlo experiments

which were designed to evaluate the performance Of several methods that

utilize a priori inforAtion about the variance structure of the errors

t of measurement to estimate the parameters of the true-score regressions.;

The advantages dnd general superiority of estimators proposed ly Fuller

and his colleagues aie discussed. In the sixth project (Chapter IV) a



special type Of model--the linear functional relation (LFR)--is

introduced and discusSed in terms of its relevance for the'study of

Change. A'variety of models which' have been developed in psychomeCrics

and econometrics for estimating the parameters of LFRs are compared and

recommendations about. the best 'matfods are made. In the following

sections, a summary of each project (chapter) is given.

CHAPTER II

The purpose of this chapter is to demonstrate the bias caused of

errors of measurement in linear statistical models for analyzing change

hnd to alert educational researchers to the potential errors of inference

concerning the determinants of true change which can result from using

unreliable measures in multiple regression/correlation and analyais of

covariance. We provide a mathematical statistical analysis of the

effects of measurement error on OLS estimators. The general situation

considered involves prez:est and posttest measurements on some attribute

that is expected.to change as a function of intervening experience (e.g.,

t.reatment) and background characteristics. A general linear model, which

has been proposed for studying change by several authors, is described.

Definitions of parameters of change and procedures for tescing hypotheses

ab t the effects of treatment and baCkground variables are also

prented. Then a simple test score modef-whidh takes the observed

(manifest) score as a linear function of true and-random error (latent)1
variables is introduced. Next we rewrite the mathematical-model of

change to incorporate this measurement model, thereby explicitly
'

recognizing the fact that the variables are not perfectly reliable.

.%



The estiMators and tests based on,the obsetyed-score distributions

are then evaluated in terms.of how adequately they estimate the

parameters of the true-score regressions or test hypotheses about effects tj

on true change. We prove that the observed-score regression estimators

are biased and inconsistent'for the structural parameters, the Magnitude ,

and direction of bias, being a complexlunctionlof the intercorrelations;

4

and reliabillities of the'vatiables. It is noted that measurement can

exert harwful effects not only on estimators of the regression

coefficients but also on the squared multiple cbrrelation and mean square

error. g'everal examples are given of how large the bias and tiow

incorreCt the resulting infekences about the determinants of change can

Vg. FollCW:ngthe proofs and demonstrations, the diiferences between the

interpretations and uses.of the structural (true-score) and

observed4pre regresaion weights are discussed. We then introduce the

concept of the identifiability and show how it is essential to

determining the estimability o5!the structural parameters. In the final

section of the chaRter, the known conditions.for the linearity of the

observed-score relation when the structural relation is linear are

delineated. The chapter provides a great deal of evidence that

researchera should be very cautious when intepreting MRC and ANOVA

results based bn observed scores. In many research situations the

Observed-score-eseimates will be so biased that highly inaccurate

inferences concerning the effects of treatment and background

charact4eriatiCs on true change will be drawn.



CHAPTER III

n this chapter a variety of single-equatiOn statistical methods that

V
. .

-have bemdeveloped ineducation, psychology, sociology, and econometrics

for estimating the "Atructuralvarameters are reviewed. Our objective-is

to draw together the techniques from diverse sources, to express.them in .

a common algebra that is synchronous with equations of Chapter II, and to

analytically evaluate tm with respect to the statistical criteria of

bias, power, and robustness. It is loped that more investigators will*be

prompted to use one of thJmethods as a consequence of this review. The

results Are intended to serve as guides for educational resear.chers who

wish to use.,one of the methosis but do not know how.to evaluate them.

In the first section we consider the original attenuation correction

formulas of Spearman and several more recent generalizations of the

method to semipartial and partial correlations. Although 1.equations for

the corrected estimators are simple and straightforward, finite Aampling

theory for thcsie-fo-order and partial correlations corrected for

attenuation has proven intractable. The methods of Porter (1967); Stroud

(1972), and DeGracie and-Fuller (1972) can be'used in situations

appropriate for one-way, analysis of covariance. Of these, Porter s and

DeGracie and Fuller's procedures have.the more general applicability.

The exactness of Stroud's method, however, strongly commends it for the

two-group design. -Although the DeGracie and Fuller procedure appears

less powerful than Porter's, this,,disadvantage may be more than offset by

the reduced bias and the safeguards of the procedure which protect
4,

Against the-torrection for attenuatibn producing "impossible" sloPe

estimatea.
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For t'fie° more geneL1 kinds of siivations in which MRC.and factorial

ANCOVA would be appropriate, xesearchers may select one of the

Stouffer-Lindley or Fuller methods. It seems clear thatfor data which

can form tn the Usual assumptions of normality, homoscedasticity, etc.,

the statistical estimation and testir procedures dereloped by Fuller

(1980), Fuller and Hidiroglou (1978), and Warren, White,,aild Fuller

(1974) will prove superior to the Stouffer (1936) and Lindley (1947)

.mgthods. Fuller's methods preclude estimatioeof singular covariance

matrices following corrections dUe to unreliabiliiy, yield sianificance

tests whic.4 are valid for finite samples, and provide a mechanism for
4

/

incorporating information about the sampling distributions of the

predictor reliabilities into,the standard errors.of the estsimators of the

truescore regression coeffiLents. ConseqUently, it appears that the

Stouffer-Lindley estimators are more sensitive than those of,Fuller and

s associates.

It is. concluded that the exfsting methods provide several adequate

estimators of the true-score regression parameters. The major remaining,

problem conS erh sampling theory for the estimators of the structural

/parameters. validity of significance tests remains a significant
e"

question for all of the estimators except Fuller's. This chapter

clarifies and refines these issues, ancrthe simulation studies reported-,,

below add further insight. It is pointed out that questions involving

the type pf.reliability estiimate-to use and testing the assumption of /

homoggnity of true4Score regiessions constitute important problems for

future research.
-

Several examples of the application of the correction methods

illustrated kinds Aoerrordhof- inference that could have resulted

6

1.7,76 13

t



from errors of measurement in previoes investigations of educational

change. It is hoped that,the explication and evaluation of the

attenuation4orrection inethods providedin this chapter will encburage

and facilitate their use in future studies.

CHAPTER IV

The purpose of this chapter is to,analyze the problem of determining

f a perfect.linear relation exists among two or more variables and tc

review some statistical methods that have been developed to estimate and,

test linear functional relations. By definition, a linear functional

relation:(LFR) exists if the true scores on two (or more) weasures are

perfectly correlated.' Although most of the statistical work on LFR has

been done by econometricians, a problem haa been investigated in the

field of psychometrics which is formally identical to LFR.

,Psychometricians have develoRed several statistical tests of the

hypotheals that two scales measure the same attribute except for

differences in means, units of measurement, and standard errors of

'measurement (or reliabilities). When scales satisfy these conaitions

they are said tó be equivalent'or collgeneric. As is demonstrated in the

chapter, equivalent tests are related by a linear functional'relation.

The correlation between equivalent measures, between two variables

that have a linear functional-relatibn,,when corrected for attenuatio

(unreliability) is, 1.0. In this chapter the diverse theory and methods
V

from econometrics, statistics, education, and psychometriCs are

collected, compared, and Integrated. Several new restrics are derived for

the errorsinvariables problem which Should prove helpful in analyzing



change occuring in.measures which .ciontain errors of measurement. Several

ways in which LFR models can be.applied in studies of change are

discussed-aftd illustrated.

The chapter explicates and compares seven statikicel methods

designed to determine if the true scores from two.or more tests are

perfectly linearly related. 'They fall into one of three sets depending

upon the typex7f information Or data-required by the procedure. The

first group contains three methods which require replicate measures of

each scale, 4E., Jöreskog (1971), Kristof (1973), and Lord (1973). In

the second set' re three method6 which assume information is available

about the covariance structure of the errors of measurement. While such

information may be obtained fromsreplicated data, it can come from any

other independent sourees. These methods, which were formulated

primarily by Statisticians concerned with estimating and testing linear

functional relations, incluge the methods of Koopmans (1937) and Tintner

(1945, 1946), Fuller (1980), and areskog (1971). The third set of

methods includes only Fuller and Hidiroglou's (1978) procedure for

testingmatrix singularity when independent information about the

reliabilities of.the variables is available. The method uses the

reliabilities to adjust the covariance matrix of observed scores in mych ,

the same wy that the.estimates of measurement error variances are

utiliied by the procedures in the second group. Indeed, ell sevsn

procedures are very similar in'lo\ ic, if not in mathematical detail:

each use6 information About the covariance structure Of the observed

sasures Snd errors of measurement (from replicate measurements, error

var nce estimates, or reliabiliey estimates) to estimate the parameters

of the linear functional relation.



The choice of optimal method for estimating and testing a linear

functional relation depends.to a great degree on the complexity of the

hypothesized modtl and typS:of data available. When there are replicate

77
atasures for each variable, Any one of the sevp propedures can be used.

a

With simple models-, Kristof'w Fuller's, or Fuller a d Hidiroglou's

methods should prove generall superior'to the others. Joreskog's COFAMM

and LISREL models will be prefrred for more complex m dels where the

sample size is large. The methods of Kristof and Fuller can be expected

to be more robusn Eo assumption violation, especially to nondormality.

When onlrestimates of measurement error variances and reliabilities are

available, the relative advantages and superior perforaance of Fuller's

, .

methods should lead to their selection. The validity of the significance
, .. :

tests for finitiftsamples strongly commends his procedures. Althdugh

Fuller's proceaures may be less sensitive in certain applications, their
^

ease of computation ansyhe availabiaity of a computer progxam for maklng

the computations commend them.

CHAPTER V

In this chapter we derive a general matrix representation which

expreres the parameters of the observed-score regression as functions of

tht covariances among the true and error components-. Explicit

expressions are derived for the bias in observed-scpre estimators of the

mean square error, squared multiple correlation, and Sampling

distribution of the reiression.coefficlotnts. Thus, we are able to-

evaluate the parameters affecting bias. .The kinds.of data and\conditions

are specified which are.akely to lead to incorrect inferences concerning



.

the determinants of true change based the results of observed-score

-regressions. The general equations expressing the bias in observed-score

regregsion estimators have not been presented previously and represent a

significant contribution o this resealch. They enable educatiOnal

researchers to determineoa priori the potential for misleading inferences

in planned research.

-.The observed-score 'estimator of the mean square error 1.6 always,

posieively biased, i.e., increased in magnitude relative to'the

true-score parameter,_ by errors of measurements in the posttest, or

criterion,'variable. Thus, power is reduced and the probability of Tiipe

II error is increased by unreliability of the posttest. Although a

generafstatement can not be made about th biasing effects of correlated

, criterion and predictor measurement erro with ihe kinds of data

typically encountered in studies of educational change we can expect bias
' - -

to increase as the correlations intrease. As the variances of the

prediCtor errors of measurement grow in size, &e,bias in the mean square

error also grows. This effect.becomeS especially prononnced as the
. ,

measurement error.variances approach the magnitude of the true'score

variances. Unequivocal statements about the degree of -biaa introduced by

correlations among the predictor measurement errors,can not be made. It-

depends pon the patterns of both the true score and measurement error

4 A

intercorr lations. If it is assumed that all measurement errors.il the

dependent ñd.ndelendent variables are mutually uncoirelated, it whl be

generally t ue tha unrq.iability increases the mean square error and

the squared multtple corielatton.is an'inversedecreases po*r.

functton of the variance of the regression residual, we know that the

2 0,
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factors which positively bias the mean square'errot negatively bias the

estimator of the true-score multiple correlation coefficient. Although

the parameters effecting bicc are seen to be highly complex,- the overall

effect of predictor measurement errors will be to increase the bias in

the estimate of-ehe coefAcient of mUltiple determination when most- error
0

covariances are positive and rektively small in siie. ThuS,

observed-Score regression analyses of change.on thaaverage will

C-7 e

underestimate thegoodness of fit of the true-score model in most

educational applications. Bias in the estimator of the sampling'

distribution of the vector of,-observed-ecore regression coefficients also

depends upon the covariances among the true scd'res and aMpng the errors

of measurement. The same factors which affect the mean Square error and

squared multiple correlation have similar effects on e4t1mators of the

standard errors of the regression weights. The main determinants of the

joint sampling distributions, however, are the patterns of the joint

distributions of the true and error componenes. General statemnts about

the magnitude and direction of bi
1;

s can not be made. Tlius, the geAeral

1-effects of bias on t-tests for the individual coefficients are difficult
A

to assess. The foriulas presented in this chapter do enable researchers

to-evaluate the potential for bias in any specific set of.circumstances,
12C

however. Therein lies their value.

.

CJIAPTER VI

The purpose of this chapten is to develop,a.method for inveStigators

to easily assess the possible impact of measurement error on statistical

:analyses of. change. Using the'results of the preceeding chapters,

especially those of Chapter V, an'algorithm is developed which taft'.es as

-11



input estimates of the paradeter values of the structural relations,among

the latent variables (which the investigator thinks are close.to ttetrue

4 value\a priori) and outputs the expected values of the corresponding

observed-score regression parameters for a prespecified-samplesize. The
A

logic of the algorithm is explained and.iliustrated with a simple exsmple

of the effects of external,locus of control orientation on change in

science achievement., .-.

As part of'this research progsam, the algorithm was implemented in
'Me

the form of'a FORTRAN computer peogram, which can be easily installed in

Most software libkaries. Input to the program consists of information

,

about the'covariancea emong the true,predictori, the reliabilities of the'

observed preaictors, and the true-score regression coefficients. The

prOgram outputp values of the true7score regression parameters and those

of the cbrresponding observed-score regression parameters. Comparison of

the two sets of parameter.values allows one to assess the degree of bi4s
40

likeli to ciccur in observed-score regressibn coefficients as estimators '

of their.true-score counterparts. In the final section of the'chapter, a

comprehensive ,siOlication of the'computer program is presented.

Use of,the program will enable investigators to become aware oi the

01kays in which.measuremenoiertor may-bias regression analyses of change.

Making this evaluation befOre data collection is completely analogous to

carryilg otit a power analysis. -The results of the assessment may lead .

the investigator to,modify data collectionl4ans. For example, the

programimay reveal that the reliability of the p'retest must te increased

if accurate inferences are to be possible. The assessment may indimte,

. .

.

that biasican not be avoided eaeily and prompt the investigator to gather /



J o

e

the data in such a way as to Make the use of:attenuation-correction
,

methods or multiple indicator. (LISREL) models possible.' Also, as with ,

powet analysis, the program can bp used post hoc to .determine the degree-

,

of-caution one Should have when interpreting the results of the

regression analyses of observed scores. .a.n many situations, like,the one

described in the example in this chapter, it will le concluded that the

possible bias in the observed-score regression estimators was so great

that any inferences must be regarded as compietely suspect.

'114

CHAiTER LVII

Chapter VII reports the results of the Monte Carlo experiments

desiined'to evaluate the performance°a various multiple regression and

analysis of covariance methods that correct for errors of measurement.

The objective of this research was.to determine which, statistical

procedures for estimating the structural parameters a cleng

demonstrated the least bias and most power. Only when'this information

is provided to educational researchers can they choose an estimation

4 technique that is oppimai-for tWeir purposes. The results of these

simulations caWbe utilized to reduce the chances for drawing,:faulty

conclatons about the effects of treatments or individual differences an

true,change analiims of observed scores. We were Portunate to be able to
If

derive a number of analytic.results which obviated the need for* some o

the simulations thai had been originally anticipated.,

eimulation experiments were conducted. The first compared
'

regression methods, and the second evaluated analysis of covariance

procedures. Different -simulations were required because the MRC and

ANCOVA correction methods required different information. Specifically,,

1-13
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I.

individual scores were needs for the ANCOVA simulations, whi/e Only

covariance matrices were required for the regression studies.

In the first'experiment the performanae of the Stouffer-Lindley

-

method was compared with that of the Warren, White, and Fuller (1274)

procedure. Both of these were contrasted with traditional OLS regression

analysis of the observed scores. Covariance maerices of true, error,.'and.

/observed scores were defined according to the equations given in the

preceding Chapters and randomly generated using IMSL subroutines. The

effects of six factors on the relative performances of the OLS,

Stouffer-Lindley, and Warren, White, and Fuller methods were

systematicallyassessed: the effect of the pretest, the pretesta,research

factor correlation, the pretest reliability, the posttest reliabilitiz,

the sample size, the effect iif.ttlie research factor on4true change, the

sampling variaice of the pretest reliability coefficient. The

performance of the methods was measured for many statistics, including

the mean square error of the model, pretept regression coefficient, and

the standard error of the pretest regression weight. Main interest,

however, concerned the bias and sensitivity of the regression estimator

for the effect of the research facto; on change. Bias, power, gnd

probability of Type I error for the three meth ds were evaluated as

relative.and absolute criteria. The results ndicated that both the'

Stouffer-Lindley and Warren, White, and Ful er methods performed

adequately across the conditions simulate The degree of bias in both

null and nonnull conditions was small, usually less than 10%. The

direction of the tdas, however, was unPredictable: In general, bias

indfeased as the effect of the preteat (or, pretest-posttest correlation)

and the pretest-research fattor correlation increased. Bias decreased as

a

0

a



the reliability of thexesearch factor grew. Empirical alpha values did
P.

not differ substantiallyfrom nominal levels. Power was enhanced by

prepost correlation,'reliability of both pretest snd research factor

scores, and measurement'. As expected, pretrtresearch factor

cfrrelation'adversely affected power. The Warren, White., and Fuller

method was superior to the'Stouffer=Lindley procedure_ when the sampling

variability of the estimators of tha pretest measurement error'variance

(Aweliability) wasrecognized. The former method explicitly
1

incorporates information concerning the variability of reliability

asmators. As the sample size uponewhiCh the reliability estaimate is

based becomes very large, the ,two methods produce virtually identical

results. With small sample sizes, however; the StoufferLindley

estimators can perf ,rm very poorly under certain sets of conditions,. We

_conclude that the method of Warren, White and Fuller can be recommended

as the multiple regression method of choice for studies of educational,

change.

1Ntesults from the second 'series of Monte Carlo, studies on ANCOVA

methods produced results that closely parallel those obtained for.

regression methods. The effects of several factors, e.g.,

pretestposttest correlation, on the bias and power of estimators of

.covariateadjusted means were assessed in the twogroup ANCOVA design.
a

The DeGracie and Full ex. method demonstrated superior performance to the .

Cohen and. Cohen and Porter methods when there was variation in

reliability estimate and sample sizes were small. The differences in

performance among the methods diminished as sample size increased. The

use of the DeGracle ana Fuller ANCOVA method for estimating the'effects



of.treatment groups on true change is advocated for the kinds of

situatiCkns generally found in educatiOrlal research. The availability of

a computer program for performing regression and covariai6e analysis by
-

the 'Fuller methods great Y facilitates the application of these

true-score estiniatiot proceduresym stIis of educational growth.

.



CHAPTER II

PROBLEMS CAUSED BY MEASUREMENT ERROR IN ANALYZING CHANGE

INTRODUCTION

The objective of this chapter / is to provide a mathematical analysis

of the effects of measurement error on statistical models for analyzing

change. The general situation that we consider involves pretest and

posttest measurements on some attribute that is expected to change as a

;unction of intervening experience (e.g., treatment) and background

characteristics. A general linearmodel which has been proposed by

several authors for studying change'is presented, and definitions of

parameters of change and procedures for testing hypotheses labout change

as a function of treatment and background characteristics are developed.

Then a simple test score.model which takes the qbserved score as a linear

function of an unobser'ved true (or latent) variable and a random error
f

component is introduced. The mathematical.modei hf change Is then

rewritten to incorporate this measurement model, thus exilicitly

recognizing the fact that the variables are not perfectly ieliable.
J

The estimators and tests based on the observed-score distributions

are then evaluated in 'terms of how adequately they estimate the

parameters of the true-score distribution or test hypotheses about true

!

change. Briefly, it is proved that the observed-score estimators are

biased for the structural'parameters, the magnitude and direction of bias

being a complex function of the Anterobrre ions and reliabilities of

t-

the variables. Next covariance structure analysis is used to explicate

tfie 'relationship betigeen the observed-score and latent-variable

parameters.. This enables us to dete$ni.ne values of the observed-score



parameters when given the corresponding-values of the truescore .

parameters and reliability information.

It should be pointed out that in this chapter we do not treat.those

situations where alisignment to treatment has been made on the basis of an

unreliable pretest. Following the,pioneering work of Goldberger (1972),

several statisticians (Kenny, 1975; Overall'& Woodward, 1976a; gubin,

1977; Weisberg, 1979) have demonstrated that unbiased estimators of the

differences between the_treatment and control groups in true change can

be obtained when this kind of selection process is employed. Furthermore,

the effects of measurement error when group regressions have heterogeneous

slopes,lies beyond the scope of this chapter. The reader is referred to

Rogosa (1977b) for an excellent, comprehensiye treatment of the effects

of measurement error on the JohnsonNeyman-ltechnique.

GENERAL STRUCTURAL MODEL OF CHANGE

Before discussing the bias caused by errors of measurement-the

general framework and.modeyor studying change must be developed since

this has been an issue of some conti.oversy (cf. Cronbach & Furby, 1970;

Keesling & Wiley, 1977; Linn,& Slinde, 1977; Werts & Linn, 1970; Wiley &

Harninchfeger, 1973). Following Wiley and Harnischfeger (1973), we wish

to consider a structural model of the effects of initial status

(pretest), eatuient program, and background characteristics on final

status (posttest) with respect to some quantitative attrilmte.

The model diagrammed in Figure 1 shows the possible causal relations 1

(assuming the model is correctly specified).among these four factors.

Insert Figure 1 about here

er,



c.4e

Since the moddl is represented along a time dimension, the background

variables, e.g, parents'-SES, sex, or aptitude, arndepicted, as most

remote from the posttest. These background characteristics can affect

either initial -status (solid arrow) or the probability of assignment to

treatment programs when subjects are not randomly assigned (broken

arrow). Initiai statui can influence final status (solid arrow) and

treatment groups' membership when assignment to grOups is based on

pretest scores (broken arrow).

Lettipg X1 represent initial status, X
2

treatments, X
3

background characteristics, and'Y final status, the model may be written

in symbolic form as:

Y bp + b1X1 + b2X2 + b3X3 + e

where b are structuKal coefficients characterizing the'multivariate

distribution of the Y ad Xj,
ngand e is a stochastic term symbolizi

sampling or specification error. In most applications the bj are

partial regression weights indicating the contribution of Xj to Y and

.could be subscripted as'byxj.xj,. This notation more clearly
I

demonstrates that referen is to thd effect of X, on Y while

controlling ihe effects of the other Xj/ (where A j).

(1)

If we define change or growth as the diffetence betweemfinal and

initial,statuses, simple algebraic manipulation of Equation 1 allows us

to show the relationship of this model to one that takes change as the

, dependent variable. 'Subtracting X1 from both iides of Equation 1,/we

obtain:

C Y-X1 bo + (b1-1)X1 b2X2 + (2)



where C designates change. 'Thus, b2 and'b3 are the same in both

equations while the weight for the pretest in Equation 2 is iimplir one

unit less than the comparable'coefficient in Equation 10 With this

approach to defining change, clearly there is no need to deal With ac

cliange Scorea as Werts ancrLinn (1970) and Wiley and Harnischfeger (1973)

have pointed out. The coefficients specified in Equation 1 can be

interpreted as parameters of change.

The growth model represented ift-Equationssl and 2 is 'defined in terms,

,of.true scores or latent variables. That is, the equations specify the

structural model in the 2me terms as does the theory, i.e., as relations

1.

among.hypotIttical constructs (cf. Cronbach & Meehl, 1955). In fhis "

context, the b
j
assume considerable importance as rameters of the ,

hypothetical mechanism which generates the observed data. Thus,,the b

indicate the-strengths of'particular connections among theoretical /

constructs and, collectively, define a behavioral or psychological law. -

In almost all research on change,the investigator seeks'information about

rthe f orm of the structural model defining change in, sta.ns for some

behavioral domain and estimates the magnitudes of the b the

constructs or latent variables could be precisely measured, it would be a,

relatively simple procedure to estimate the b from the measurements

'and to evaluate the adequacy of the model in accounting for the observed .

data. Unfortunately, in the social sciences our capability to measure

theoretical constructs without error is limited so that-estimating and

testing structural models becomes highly problematic.



To describe the mechanism which more adequately reflects our beliefs

about hhg the observations came into being, waconstruct the model

,depicted in'

Insert Figure 2 about here
b

Figure 2. In this'schematic, recognition is given the fac that one's

measurements are lallible, i. ., contain errors.of'measprement. Now a

.
.

system of structpral'equations is required to specify the model.
1 We

I

add to Ecidation 1,the following:

xl 21 flO + fl1X1 + ul (3)

, x2 - f20 + f21X2 +612
(4)

X3 m f3Q + f31X3 + u3

Y- "1 fyo + fyg -+ v (6)

where x. and y are qbaerved or measured values,.the X and Y 'are true' l'

( J J
,

Scores or latentvariables, the u
j
and v are errors of measurement, and

.

the f coefficients are parameters specifying the regression of the

observed scores on the underlying factors. The f are, iefact,

A

factor loadings. The reader may recognize this as an application of

' JUreskog's (1971) theory of congeneric tests. Using vector and matrix

notation Equatiqps 1, through 6 may be written compactly as

Yk b + ek

Ox+-F XX + u k

Yk f Oy+ F yY + v k

where underscoring is used to designate, vector_(lower case) and matri (upPer
A

case) quantities
2 and F is a diagonal matrix with the

x
loadings

1

the principal diagnoal. Together Equations 7, 8 and 9 condtitute a LInear



Structural RELations (LISREL) model as defined by Jdreskog (1972, 1973).

-Equations 8 and 9. specify what is termed the measurement model, while Equation

7 represents the structural or causal relation. AlthoUgh social researchers

state their hypotheses'in terms of Equations 7-9 and would like to estimate

the values of b and.f contained therein, most are forced to perfori a

regression analysis of the observed scores (treating them as Af they were the

true scores). This situation isvdepicted ih Figure 3, which shows that the

x have been 'substituted for the X . The regression parameters giving the

Insert Figure 3 about here

expectation of y for fixed x are designated with primes, b' to
J-

indicate their.correspondence to the respective structural parameters,

. Patently, the b' will equal the corresponding b only under abj

very limited set of conditions. Using estimatots of the b' as -

.

estimatora of the bj is unsatisfactory in most applications, because

the t'j are neittier unbiased nor consistent estimators of the bj.

Therefore, inferences about the nature of change and its determinants can

'be inaccurate or misleading if based on the regression estimators, t'j .

In the next segtion we demonstrate the bias and inconsistency of the

observed-score estimators and describe the potentially deleterious

effects of measurement error on inferences about change.

PROOF OF BIAS AND INCONSISTENCY

In this section we consider the consequences cif using the t'j as
,6



estimators of the orticturil coefficients. For ease of exposition, the

case bf one X variable is taken up first an4 then the two-predictor

case. FolltAiing proofs for these cases, the-proof of bias and

incOnsistency for the general multiple variable situation is derived.

The Single-Predictor Case

To prove that the Ordinary Least Squares (OLS) regression analysis of .

rhe observed scores produces biased and inconsist'ent es,timators of the

_structural parameters when there is a p6sttest and a single Pretest, we

begin by writing:

b 0 + b'1x1 + e' 4 (10)

and letting f 0 and f
11

.1 1.0 in Equation 3 and f
yl

m 0 and f
yl

1.0.
Ol .

in Equation 4

xl m X 1 + ul ,

y Y + v .

tti (xlk 511) (Yk - Y) . syx1

and

2:k (xlk R1)2
; 2

57. S1511

(12)

(13)

(14)

The summation is taken over k 1 to N units of obseriation. Substituting

Equations 11.and'12 into,Equation 13, we find

2ncY
1

+ v) - a + v)] [(Xl + u1) - a +
.

21E:[(X1 + ul) - (l + ul)]

m2E(Y-i)(X1-i1) +2(X1- il)(v-v) +Z(Y-i.)(1.1141) +2(.v-v)(ul-ul) (15)

42:(Ki-X1)2 + 215.:(X1-311)(u141) u17.u1)2.

_On the assumption that E(X
1
u
1
) E(X

1
v) E(Yu

1
) 0, the

-
second and third terms'in the numerator and ehe second term in the

'4)

ttt.

II-7
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,xt

denominator approach zero as 'theisample increases withbut limit. Thus,

the probability limit for t'l is given as

6YX-1 svul \\

plim t'r
'(16)

sx12 stil2

Making the additional assumption that errors'of measurement in y and x,

'are uncorrelated and notigg that by definition we divide both the

numerator and denominator of Equation 16 b1')s)(2 to obtain

sX
2

'Aim 1)(1 m
sul2

1 +

(17)

(18)

2
sX1

The probability limit of b'l does not equal 1)1 but underestimates it.

Thus, the OLS estimator of the slope of the regression of the posttest on

pretest is an inconsistent estimator of the structuril parameter. By

similar stepS and noLng that.E(e t1u1)(x1 - Ri) does not equal zero, it

fpllows that b'l is a biased estimator of b1.:3 From psychometric theory

(Lord & Novick, 157'68) the population reliability of the observed variable

x
1

can be written as

r11

sx12 s
X1

2

2
6X1

2 +
8ui

2 6x1

(19)

Using this identity Equation 18 can be rearranged into a more familiar form:

plim ti
bl r11b 1 (20)b1 sx2

2

8Xj
2 + Cs 2

ul 6u12

2 1



,

4

Alternatively,

rll

,'For'additional details concerning this proof the interested reAder is

,referred to Bohrnstedt/419691 pp. 122-125), Cochran (1968, pp. 651-652),
. A 1

Johnston (1963, pp. 14845O), and.Schmidt (1976, pp. 105-115).

Since r
11

'1.0, b'l )33.. The relationship (structural

4
coefficient), between the latent variables'is always greater on average

than which would be inferred from the OLS regression of obserled scores
#

when these bservations are fallible. Thus, eAors of measurement

"attenuate" the regressiOn of Y onX
1

that ia, they bias the estimate

of the slo e toward zero. Note that it is the errors in x and not those

in y which cause the bras as long as E(vu
1
) O. Since a value of 1.0

for 131 clould indicate no expected change from Time 1 to Time 2"

measurements, the attenuated estimator t'l will lead to.the faulty
n

inference that persons above and below the pretest mean (X1 xl) will

show more absolute Change than is actuAllyth case. Of course, this is

the well-known regression to themean phenomenon caused by errors of

measurement (Campbell & Stanley, 1963)., The point is that inferences

about true change and about true change as a function of true initial

status (Thomson, 1924; Werts & Hilton, 1977) will be inaccurate because ,

of the unreliability of the pretest measurements.

The Two-Predictor Case

It is now our purpose to'dedonstrate the bias and inconsistency in

the t'j two predictor case.where X1 i'Pa pretest and X2 represents another

II-9



deteriinant df change, either a treatment or background variable. If

this second vaiiitble is classificatory, i.e., represents memberShip in,a

treatment or sociodemographic group, then X2 becomes a coded variable,

and the b
2
is A function of the mean differences between groups..Thus,

analysis of covariancean be nepresented as a standard multiple

regression problem (Cohen & Cohen, 1975; Overall & Klett, 1)72). Our

concern is with the structural model specifying chaugenas a fUnction of

initial status and treatments or background characteristics./ This is

most easily dealt with by expressing Y as a function o X
1

nd X
2

:

Y = b0 + b1X1 + b2X2 + e (22)

We begin with the standard definitions of the structural parameters as=

given in any avanced text on linear models:

b1
sX2

2-
sYX1 8X1X2 8YX2

5x1
2

5x2
2 8x1x22

sx12 8712 - 5x1x2 sul

2 2 - s 2sx1 ,sx2 . X1X2

ana bp =,Y b1171 - b2R2

(23)

(24)

(25)

Addingthe stipulations that.x2 = X2 + U2 anethat E(u1u2)'= E(u2v) =

E(X1u2) =.E(Y2) = E(Y1) = 0 to the bivariate regression model considered

above, we can derive,the expressions for the/expected,valuds of b', as

functions vf die b The formulas for the observed-score estimators

analogous to Equations 23-25 are

2
8.T41 axlx2.8.Tx2

2 :__ 2' L. 2

(26)



and

841 85'42 84142 8Y41.

: 2 i2 : 2
-xl -x2 -xlx2

b'1511

a,

1

(27)

(28)

-Using the psychometric identity that s s under the stated
YX xj

assumptions (Lord & Novick, 1968) and substituting expressions for the

true scores into Equations 26 and 27 thefollowing results are obtained:

and
S2

(sx22 su14) sYx1 sx1x2 sYx2

(sx12 su12) (8x22 su22)
s XiX22

(sX12 4..Sul2).;YX1 ;X1X2 ;YX1

(sx1 ) (sX22 su2
2 _
) 8x1x2

2

2 2

/ (29)

(30)

Clearly the b'j do not approaeh the bj in.the limit unless sui = su2 = 0.

Thud, the,b' are not consistent estimators for,the structural

coefficients. As with the bivariate caie, the bias of the b' follows'

,
from the fact that the expected value of the aovariance of the residuals

from regression and the true X values does not equai-zero. Equations

29 and 30 reveal how potentiallx misleading the observe&-score regression

weighte can be as eStimators of the structural coefficients.. The Value

of b'l can be greater or less than bi'dernding_upon the magnitude of

s 2.' A similar result:holds for b'2 and b2. While tn the
ul

bivariate regression case the slope estimator is attenuated by errors of

measurement on the average, in the multiple regression case the value of

b'4 can 131e either attenuated or "accefttuated" (Wiley & Hornik, 1972) by

measuremcnt or obserVational errors.



The fact that b'' can be étatiatically significant With a negative

sign while the structutal paiametet has a relatively large positive value

has lead many itatisticians and psychometricians to recommend strongly

against the use of b' as estimators of the b e.g.i Cochran (1968),
J)

Cohen & Cohen (1975), Cronbach-(1976), Hummel-Rossi & Weinberg (1975),

aud Lord (1958). The bias in the observed-score regreseion weights

attributable to measurement error certainly posee-a grave problem for

longiiudinal redearch. It can produce inferences that the effect of

Treatment 1 relative-to Treatment 2 was harmful when in treth it was
o

beneficial. Or, it may'lead tp conclusions like high SES cLldren

changed More than,low SES children when, JAC fact, relative change was in

the opposite direc4n. 'This would seem an intolerable atate of

affairs. Moreover, the biases in the regressipn weights are not the only

parameters of change affected by measurement errox. These will be

described after the expression of the bias in the b' has been derived

for the generdl case of .1 predictors.

The General Case

Let S and S be the vitgnce-covariance matrices f the 'true'
xx

and observed scores, S the covariance matrix of the errors of
uu

measurement in the x variables, sxy syx the vectors of

predictor-criterion covariances and b and b' the vectors of regression
,1

weights for the true and fallible variables, respectively. Then it

f011oWs that

b' S xx s yx YX -

S.

(31)'

(32)



b' (S .xx + uu) YX 9

and b S xx = b'(S xX + S

(3)

(34)

where the vectors b and b' are transposed to make the quantities conformable

for multiplicatfon. Postmultiplying both sides of Equation 34 by S -1XX '

we find that b can be written as a _weighted function of b' (cf. Lindley, 1947,

pp. 227, Eq. 40):

4

This matrix product indicates that unless the X are uncorrelated,cthe

bias in b'j as an estimator of b4 depends not only on the errs in

xj bui also onsall intercorrelations Xjj'(j. j').4.Thus, even when

4 Xi is measure perfectly so that xj = Xj, b'j still will be a

biased estimator of bj.

Errors of meaeurement, therefore, should ex their most damaging

(35)

effects in survey'and quasi-!axperimental studie where the lack of .

experimental control will result in,substadial4intercorrelations among

the pretest and factors associated with change.. In these kinds of

studies of change the weight associated with the pretest "undercontrols"

(Wiley & Hornik, 1972) or insufficiencly adjusts for differences among

individuals in initial status. In ANCOVA the regression correction for

covariate'(pretest) differences between groups may be too liitle or too

great, and the resulting comparison of differences in adjusted posttest

means will be biased if the groups differed initially (Snedecor &

Cochran, 1967.).L In pre ictor sets where some,of the variable& are more

reliable than'others,' part of the contribution of the less reliable

predictor will be attributed to the more reliable predictors. However,

other factors- associated with quasi.and.nonexperimental studies may more

. ri
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1

than offset the inadequate adjustment due to measurement error (Cronbach

et al., 1977; Heckman, 1979; Olejnik & P6eter,. 1981; Weisberg, 197.9).

Under some circumstances, no adjustment at all for the.pretest reduces

the bias in b .

EFFECT8 oF MEASUREMENT ZRROR ON ,OTHER ESTIMATES '

In'addition to\the roKems with the regression weights there are

4
othef potential pitfalls to interpreting'the observedTsc9re regression

results as providing' verdical information about the hypotfiesized

structural model. Some of these will be briefly summarized. First,,

errors of measurement will make the overall adequacy of the model.appeat

leas than if the variables were:perfectly reliable. Both indices of the

goodness of fit of the data to the model, the coefficient of multiple
0

2
correlation or determination ), and the mean'squ.ire error (MSE), or

residual variance, will be biased by'observational errors. R
2
will be

attenuated and MSE inflatedson the average (Bohrnstedt, 1969; Cochran,

)

. 1968, 1970). When the X are uncorrelated, Cochran (1970) has shown

that the degree of attenuation in R2 is a function of tie reliabilities

of y and the xj:

R'2 R2 ryy Yw (36)

where w is a weighted average of the rjj. It is apparent from the formula
0

for the mean square error or the residual variance from regression,

13e2 ' s
y2 (1412) 137)

that errors of measurement will have a proportionally greater effect as

.2
R increases. Although he was unable to derive a closed form

expression for R'
2
when the X., are correlated, Cochran (1970)

q;



suggests that Equation .36. "may serveVs a rough guide to the effect of
0

'errors ofialeasurement onthe squared multiple correlation in many

apPlications'. The value of R'2 may be up to 10 percent higher (than

Equation 36) if most correlations are positive and harmful and.the rjj

1

exceed .7, and up to 'Vhigher if the r
jj
.re as low as .5" Thea

.

.

decrease in explained v\riation means tha.t the power of statistiCal tests

...,

will be lowered.. While the errors in .y do not contribuES to the bias in
-,,

the b' as long as v is uncorrelated with Y, Xj and uj, they do

T

contribute to the reduction ;.n R2 as indicated in Equation 36 and thus

alao to loss of power (cf. Bohrnstedt, 1969; Cleary & Linn, 1969;

Cochran, 1968, 1970; Nidewander & Price 1977; Sutcliffe, 1958; Walker &

Lev, 1953; Winne, 1977).

Although the raw partial regression weights are not b ased by errors

in y, the standardized partial regression weights and pa h coefficients

are attenuated by v. Additionally, both prediction and simulation will be

affected by errors in y.

. -

.The finaketkasequence of errors-in- measurement in analyses of change

concerns the diatortions they cause in analysis of covariance. As

pointed out previouily, errors of measurement in the pretest will bias

the estimates of adjusted posttest differences if the groups differ in .

mean peetest scores*(Cam0e11 & ErlebaCher, 1970; Dunivant 1975, 1977;

Kenny, 1975; Overall & Woodward, 1976a, bi:Rubin, 1977; Werts & Linn,

1971). ANCOVA is predicated.On thesssumption of homogeneous pooled

withingroups regressions ofIcovariate an criterion. Whenever the slopes

are heterogenous, or equivalently, there.is a covariateblyresearch

factor interaction, ANCOVA is no,longer appropriate. A mathematical

model which evaluates the differences in regression lines mUst be
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adopted. This may take the form of the Johnson-Neyman technique or

product-vectOrs in multiple regression.,

Recently, Rogosa (1977a, b) has demonstrated that the loss of powet

\

due to errors of measurement will cause the investigator to fail to

reject the hypothesis of homogeneity of regression in many situations

where it is false (Type II error). Thus, ANCOVA will be utilized on. manY

occasions when the Johnson-Neyman technique or analysis of partial

variance (Cohen & Cohen, 1975)kare appropriate. Faulty inferences about

the 'underlyibg causal model will frequently result. The reader is
\

referred to Rogosa's (1977a, b) papers for a presentation of the biasing

r'
effects of measurement error on the Johnson-Neyman technique. A recent

search of the literature (see appendix) located only one reference

(Busemeyer, 1980) out of over 400 articles surveyed which treated the

effects of measurement error on cAtimators of nonadditive or interactive

effects in multiple,regression (Dunivant, 1980). It is fair to conclude

ftom the demonstrations presented in this section, that in analyses of

change, the potential for errors of inference caused by errors of

measurement is very great. This pro4lem should be of considerable

concern to any 4nvestigator who collects test-retest data and wishes to

exnlain change in scores during the interval. In the following we review

several examples of the magnitude of the bias in bij as estimators of bj.

DEMONSTRATIONS OF BIAS CAUSED BY ERRORS OF MEASUREMENT

Several statisticians have constructed hypothetical examples to,

illustrate the kinds.of problems caused by errors`sof measurement.

Cochran (1968) provided the coefficients reproduced as Table 1.



Inspection of the entries reveals that in the two 'predictor case when

bl = ,2 and bl = 1, and that the estimators b'l and b'2 may

siMultaneoUsly underestimate both b1 and b2 or overestimate one and

underestimate the other depending upon the respective celiabilities of

xl and x2. There is even one example (r11 = .6, r22 = 1.0, rx1x2 =

'where l'p12. In an example constructed.byBornstedt and Carter (1971) .

0 the observed-score estimate and structurdl coefficient had opposite signs.

If r
11

= r
22

= .81, r = 1.0, r = .7, and r = .031, then
YY Yx2(

b'
1
= .03 while.b

1
= -.186.

A different approach to demonstrating the bias in partial regression

coefficients has been pursued-by Cotder-Bolz (1978), Hanushek and Jackson,

(1977), Ladd (1956), Marston and Borich (1977), McLean, Ware and McClave

(1975), and Porter (1967). These statisticians have employed Monte Carlo'

or simulation techniques to g e data which conform to a structural

*
'model whose parameter values are specified a priori. Hundreds or

/

nera

thousande of samples of simulated observations.are then analyzed by OLS

regression and the mean and variance of the resulting b' are compared

with the preset b . Thus, Hanushek and JackSon (1977) generated 100

samples of 200 observations each from'a model with parameters

bp = 15, bl = t b2 = 2, and rx1x2= O. When r22 equaled .8,

the medn estimates were b'
1
= .99 and b'

2
1.31. In another

simulated experiment thWans were .97 affd .36 for b'
1

and b'
2'

respectively, when the reliability of x2 was lowered to .4.

Corder-Bolz (1978), McLean et. al. (1975), Marston and Borich (1975),

and Po ter (1967) investigated the ffects of measurement error in the

-
cov riate on tests of adjusted grou differences in ANCOVA. McLean et al.

II 17
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(1975) varied the reliabilities of the dpvarfate within and asturzs-tr-4,

the ample size, and the mean differences on the covariate betw en the

experimental and control groups in a 6 xl x 2 x 2 factorial ANCOVP-

design. Both the empiTical alpha level (Type I error probabilities) and

empirical Power (l.TYPeyL error probabilities) of the hypothesis of no
.

.

pdjUsted posttest.dif erences were evaluated for 2000 sets of generated

observations. 'The results indicated that if the groups' pretest Means were
.

,

.
1.

equal (no pretest-group factor .L>rrelation), then the nominal alpha valueS

were not significantly disturbed by errors in the covariate as would be

expected (Kenny) 1975;.Overall & Woodward, 1976a, b). However, if ther
4

was a pretest-treatment correlation, then the nominal alpha values were

5
. great%y affected. In general, the fallibility of the covariate resulted in

an ugderadjustment Of posttests differences so that the empirical alphas

exceeded the nominal alphas. With reliabilities in the .5 range, Type I

,errors were made,id 40% to 100% of the samples depending upon whetber the n

per group was 10 or 100. For all conditions empirical power differed

4
signI4antly from true power. Sometimes the empirical ppwer was

signifidantly loweand sometimes it was significantly greater than the

theoretical value. According to McLean et. al. (1975) "the most dramatic

resule(was) that where the experimental group actually 'experienced a gain

and the control group did not and the pretest mean of the experimental

group was less than that of the control group, the adjusted posttest means

indicated that the control group was better" --(p. 550).

After conducting extensive simulations in which reliabilities,

pre-posttest correlations, covariate-treatment correlations, and treatment

effects wereyaried systematicall rough a wide,range of alues,

Corder-Bolz (1978) concluded "that the models tradltionally used to



evaluate change [including ANCOVA] can produce seriously:distorted results"

(p. 975). Porter (1967) also conducted_extensive simulations. Hid work

.c

indicated that the bias in ANCOVA estimators and significance test could be

very large. In contrast tO these findings which accord closely with the

derivations gresented above, Marston and-Borich .(1977) reported-that in

'their Monte Carlo inVestigation of ANCOX4 with an.unieliable covariate, ihe

tests of adjusted group differences did not exceed the nominal alph.I'level,

eVen when the pretest means differed. It is difficult to explain this

anomalous iesult assuming that their data generation procedure performed as

they expected. Using a complete, over-identified, nondyna c two-equation

model Ladd (1956) generated 30 samples of observations on :o endoge eous

and two exogeneoud variables. The re4abilities of the variables ranged

from .74 to .92. Whedthe two regression equations were estimated

separately by OLS in ,the 30 samples Ladd found that the average b'

. \

sometime,s was greaeer.than and 86etimed smaller than their respective

`NA \\ .

structural parameter values. The avera e least squaKes bias ranged from 0

to 31% for the eight regression coefficients'acrOss the ao samples.

To summariee the results of ihe Monte Carlo demdnstrations, in four of

five inkTestigatiOna, the findings ofthe simulated data,were congruent with

the proófi andiierivations.presented in the previouslections. Thus, the

evidence is quite substantial that if the observations are actually

generated by a mechanism modeled by Equations 1-6 (or 7-9), OLS regression

estimates derived from observed scores will lead to erprs of inference

i because of the'errorS of leasurement.

Before concluding this ecti.on it is instructive to note that several

writers.fidyeAllustrated the possible bias due to the "errors in variables"

in terms of zero-order and partial'correlations. Since these correlations



can be written as functions of the b the same bias will be observed in

the r' as in the b' Consider the one predictor case where the

zero-order correlation between true pretest and true posttest can be-written

rYX1 b1
sxl
sy

and the Corresponding estimaioi based'onlallible data is.

;
yX1

t

(38)

(39)

Since b'l is less than bl, r'yx1 will be less than ryx1 except for sampling

error. Bohrnstedt and Carter (1971) have constructed extensive tables

illustrating the possibla !'attenuating" effects of measurement error on

ryx1. Psychological researchers have been cognizant of these kinds of

problems since Spearman' -(1904) classic paper.

The case for the coefficient of partial correlation is directly

analogous to that for the-partial regression weight. Fallowing DuBois

(1957, 137,.Eq. 80) we,vrite

r' yx1. x3 ,

s - t 'yx1 .x1x2 8yx2

t'Xlx2 5x1x2 fi'yx2 8yx2

(40)

Clearly, the observed partial correlation will be subject to the same

distortions as are tt partial regression weights. Cohen and Cohen.

(1975) have"furnished several examples, which are 'reproduced in Tabla 2,

of kinds of bias in partial correlations that can result from errors of

measurement in the partialled variable.

Insert Table 'about here
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In al?.'of Cohen and Cohen's examples the reliability df the pretest

(the partlialled variable) is .7 and the Posttest and research factor

reliabilities are 1,0.'The par4a1 correlations may.be,interpreted as
;

the correlation of the research factor with change. In the first example

,the obierved.porrelatios of the research variable with change is .00

while the true or structtural coefficient.equali -.23. In other examples

the observed rTh2.xj underestimates and overestimates, and in some it even

has a different sign than ryx2 "cl. Regardless of the perspective taken

the same conclusion seems to obtain: errors in variables will bias

statistics based on observed scores as estimators of the underlying

structural model and are likely to-lead to erroneous statements about the

determinants of change. Additional demonstrations of the effects of

measurement error have been offered,by Brewer, Campbell & Crano (1970),

Campbell & Boruch (1975), Campbell & Erlebacher (1970), Evans & Anastasio

(1968), Humme1-Rossi & Weinferg (1975), Kahneman (1965), Linn & Werts

(1973), and Lord (1963).

REGRESSION VERSUS STRUCTURAL COEFFICIENTS

. We pause brief4 in our review of the.effects of measurements error

in studies of change to reconsider the question of formulating a

structural model. An applied orientation which has a long 'tradition in

psychology and education disagrees with the importance accorded the

structural model by.this reviewer (cf. Draper & Smilh, ),966;. Graybill,

1961; Lumsden, 1976; Marston & Borich,/1977). The Position of this

applied tradition is that the variables of interest are the observed
4

Scores (errors included) because decisions, predictions and evaluations

A



owso

go.

are befied_on,:o.bserved rather than true 'scores. When decisions are based

on observed acores, there is little doubt about the validity of this

position.

It should be recognized, however, that with respect to

decisionmaking.the true score has been redefined as identical to the

observed. score. .Rendom fluatuations in seOres are no.longer regarded as

error but are treated as part of the inherent variability of the

predictor. Thus, if one is trYing to predict the observed final status

or gain' or one is attempting to model economic'decisions where judgments

of producers and consumes are based on observed va ues (Johnson, 1972),

then the OLS regression estimators are unbiased and consistent for the

parameters of interest. This last statement is subject to one

qualification: if the structural model accurately refleets the causal

mechanism and a group.of individuals are selected for study by some

nonrandom process independent of the pretest, then the structural

) coefficients will Provide the optimal estimates (Warren, White, &

1974). In this context inferetces from regression analysis of the

observed data must be limited to randomly drawn samples. Aowever, it has
,

also been demonstrated that ig selection into the treatment groups in an

ANCOVA design is made explicitly on the basis of,the.pretest scores, then

9

the observedscore ANCOVA estimates are unbiased for the structural

parametes (Goldberger; 1972; KennY, 1975; Overall & cloodward, 1976a;

-Rubin, 1977; Weisberg, 1979). This usually means conditional

randomization Where the probability'of assignment to a group for each

value of the pretesf is explicitly determined bythe experimenter. When

the treatment groups pretest distributions do.no overlap, we have the

II p.22 .



:0

\\i 4

regression-discon inuity design which has ,been advocated by Campbell

(1969).

In almost all social science research, particularly etudies of

change, the itructural conception is the more appropriate. The

structural model represents the causal.structure or theory of the data.

Research concerned with theory and hypothesis testing.should be

conceptualized in terms,of the underlying dynamics of the behavioral 0

proceSses under consideration. Hanushek and Jackson (1977) are

particularly lucid on this' issue: "Structural equations . represent

the way in which we believe the observed data were generated, i.e., the

underlying behavioral and stochastic processes that fed to the obserired

data. The structufal representation corresponds to the theoretical

models underlying ihe analysis an4 relates to the formulation of,the

model where a priori information about speciiication or coefficient

values is relevant." (Hanushek & Jackson, 1977, pp. 227-228).

Furthermore, if one it,interested in testing competing theories, then the

structural models should be estimated since 'ple theoretical models apply

to latent or true varietes and not the observed values.

In another sense 'the Atructural.coefficients may be taken as mOre

basic.or fundamental than those derived from the observed-score

distributions (Goldberger, 1973; Hanushek & Jackson, 1977). The

parameters of the distributions of the observed scores can be expressed

as fuuctions of the structural parameters, for example, Equation 34. A

change in the value of one structural coefficient can change the values '

of sevefal or all of the observed-score coefficients. Thus, if we record

changes in'the observed-scOre estimators as different samples are drawn
ci

(e.g.; malea and females or'1965 and 1975) me have little way of



ascereeining the component(s) of the theory on which they differ. The

implications of these facts are clear: most beh vioral research,

particularly that called "basic" researc should e conceptualized-and

analyzed in terms of structural model
5 \

We now tak up smile issues

-related to the estimation of spruc ural parameters.

IDENTIFICATION REQUIREMENTS

Identification of a statistical model refers to the capab lity of

uniquely determining the value of each hypothesized componente m the

model. For linear statistical models all of the informatip/Contained im

the observations which is available for the estimation of parameters is

contained/1ln the Variance -covarianceomatrix S The number of
-yx

parameters which can be identified is equal to the number of unique

elements in'S , which is equal to p(p + 1)/2 where p is the total
-yx

number of vaiptilds represented in the matrix. Let us evelop the case

considered previously where there are fallible ptetvt,and pouttest

scores related as in Equation 2-9. The covariance matrix of the

observable 7-lector (y, xl) in terms of parameters rather than sample

statistics is

S

)

:LI. 1111
2

2sx12 4. sui

all

. (41)

Th -ereare three observable quantities, s y2 s xl
2 s which can be used ,

$ yx1I

to uniquely- identify theT parameters ex12. 5e2 and b '1. (For' present purposes

we ignore the fact that information about the observed means can.be used

to identify b'o as in Equation 14.) However, the structural equations

,
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are'defined in terms of five parameters. Since there are only three

variances and coliariances, the model cannot ,be.identified without two

independent restrictIOns. I. the megsuremene error-variances

(8u12, su22 and sv2) or the reliabilities (ryy and r11) art known a

priori, then the coefficients candbe restricted to these values leaving

'the tfireg"nnknown paraMeierg estimable from the. observed variances and

covariances.

It is easily proved that when there is only a single measure of each

latent variable and .no Information about reliabilities available that the

structural model is underidentified and a priori iestrictions must be

imposed in order to make the parameters estimable (Johnston, 1972;

Kentall \Stuart, 1961; Mandansky, 1959;'Werts, Linn & Jöreskog, 1973;

Wiley, 1973). This is also illustraied by the twopredictor case

described in an earYier section. The structural diode' given by Equations ,

3, 4, 6 and 22 contains eight parameters (sx12; sx22, su12, 5u22, sv2, se2,

b
1

and b
2
) while there are only 3(3+1)/2 6 observed variances and-

,4

covariances which can be used to identify the model. Without a priori

information about the error variances (or soma function of them, e.g.,

the reliabilities) of restrictions on the model (e.g., s
2

n 0), the

4
model is underidentitied and cannot be estimated from simple data.

In general, there ire three metho s by which the information

necessary for identification may be pr vided: (1) actual values or
-

"estimates of the structural parameters ma)/ be determined from previous

0
investigations, (2) the theory,may restrict some of the parameters to be

zero or eb equal other parametera (e.g., 8Ui2 su22);(3) Multiple
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"measures or indicator's of the latent variables or true scores-may be

col ected (JUraskog, 1973; Wiley, 1973). This final alternative may be

Xhought of as imposing a factor gAructure on the observations and, as a

method, has excited much promising new research in psychometrics,

soCiology and ecOnometrics (see-Aigher & Goldberger, 1917; Goldberger &

Duncan, 1973). However,i.n. this report our exclusive concern will'be

',With the first and second methOds for identifying structural models with

fallible variables.

LINEARITY CONDITIONS

Even when he model can be identified by the methods just described,

research on the causes of change with fallible variables faces an

additional problem before estimation can proceed. That is, rationalizing

or testing the assumption that the relationship of the obserVed dependent

variable to the observed independent variables remains linear when the

underlying strudtural relation is linear (Cochran, 1968, j1972; Kendall &

Stuart, 1961; Lindley, 1947). Here linear means linear in the X

(straight,line) rathejr than linear in the b If t e structural

relation is exactly linear of the formj

.Y.= to + blX1 + b2X2 + e

and the Xj and epare independently distributed with E(Y. Xj) 0, does.it

follow that Y b'o + b'lxi + b'2x2 + e
. .

with E(y (xj) 0, is also emictly linear? "The answer is, in general, no;
44

only under certain quite stringent conditions will linearity be
-r

unimpaired" (Kendall & Stuart, 1981, p.

Lindley (1947) has determined the'neaessary and sufficient conditions

(42)

-

or the relation to remain linear in the narrow sense, i.e., where x and

II - 26 52
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are not independently distribute4, If we assume that the inodel

specified by Equations 7-9 holds with the assumption that the errors are

mutually and serially uncorrelated, then

iff

where the Ts are Fisher's cumulant generating functions - c.g.f.s.

(logarithms of the characteritilc functiont) of their'suffiX variables

(Cochran, 1968, p. 650, Eq. 8.3; Kendall & Stuarc, 1961, p. 417, Ex.

29.12; Lindley 1947). Thus, when the c.f.g.s. of the X. a r e multiples

of the c.g.f.s. of the uj the relation will Continue to be linear.

Cochran (1972) o1 bserves that "roughly speiiking, this implies that u.
3

and Xj belong.to ihe tame_class of distributions. Thus if Xj is

dittributed as s %AO iS U . . if X is normal, uj

muct be normal" (p. 527).

Additional,conditionS ate necessary if we require the xj to be

distributed independently of the residual frOm regression(e')., that is,

to maintain linearity,in the fuller sense. Fix (1949) proved that fors

the case of bivariate regreesion if the X, u, v and e have finite meahs (

and if the variance of either the X or u exists, then both X and u must

be normally distribute4 in,ordet for the observed regression lo remain

exactly linear. \

In actual data how trequently can we expect Lihdley' and Fix's

, conditions to hold? Cochran (1972) argues that "the.forces which

dt,armine the nature )3t tie dlttribution of u . . are quite different

from those that determinethe nature oi the 4istr4ution of the correct
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[true] X. Consequently, my opinion is that in such applications even the

Lindley conditions will not be satisfied, except perhaps by fluke or as

an approximation " (p. 538). He investigated the,nature of, the

depatture from linearity in simpleqdvariate cases where Lindley's

conditions did not hold. His results suggest that in.many situations the

Ainear compOnent.pi the observed-sCOre regresaion dominates the

curttilinear components, even with a relatively unreliable xl. These

findings'provide'some.support for allowing "the ordinary theory to be

used as an approximation" (Kendall, 1951, p. 24). However, Cochran was

unable to obtain any general results that are exact in the bivariate

case, and the nature of the departures froi linearity in the multiple

predictor case when Lindley's or Fix's conditions are not satisfied has

not been investigated at all.

SUMMARY

'

This concludes our initial mathematical analysis of'the probleMs

cused by errors of measurement in investiiating change with linear,

models. A general structural model for analyzing change has been

presented. The theoretical p!...is and inconsistency in the observed-score

regression coefficients was proved, and the harmful effects of

measurement error on estimates of the squared multiple correlation, mean

square error, and standardiZed regression weights.were explicated. We

described several demonstrations of how large the bias and how incortect

the resulting inferences potentially could be. The interpretation and

uses of the struc4ural coefficients were contrasted With those of the

regression coef4ctents. We in4roduced the concept of identifiability

- and showed how ilt.was essential-to determining the estimatibility of the



structural parameteri. Finally, the known conditions for the linearity

of the observedscore relation when the structural relation is linear

were dalineated.
I

Statistical developments from econometrics, eociology, eduCation,

psychology, biometrics, and mathematical statistics were synthesized in

this Chapter.' This is the first comprehensive (yet, hopefully,

comprehensible) analysis of the problems caused by measvement error in
a

liner models for analyzing growth that has been made available to

educational researchers. Its purpose i to alert investigatois "of the

harmful* effects of measurement error and to furnish a detailed exposition

of all the major issues. If the objective is realized, future

-

longitudinal studies will be designed with greater care and interpreted

, with greater caution.

-
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FOOTNOTES

1 In this proposal we'treat only single equation estimation
techniques, so the structural coefficients for the paths between X3 and
Xi and between X1 and Xi are not considered. See Hanushek and
Jackson (1977) or Wiley and Harischfeger (1973) for multiequation
estimation.techniques for the genera path model.

2 The superscript t will be used to designate vector and matrix
transposition.

., .

3 It is also easy to show that b'o is a biased and inconsistent
estimator of bo. After bl has aeen determined, bo may be found

° using the formula (Cochran, 1968, p. 651):

J- 1-
- 1b'j bj (1 - suj2 sxj 2,) - s xixj sxi bj .5 i

4 It should be obvious that. these statements hold quite generally
and not only with respect.to studies of change. Indeed, the problems of
measurement error considered in this report afflict all statistical
models, not just those for anlyzing change. The issue with,regard to
test-tetest data asaumes greater theoretical and methodological import
because"of the conceptual status of the partialled variate, i.e., change.



Table 1

A
Values of It/ and b'2 when bl = 2.0 4nd b =1.0

a

rv v =
-1"2

+0.3 rX1X2 = 70.3

r22 rll =
.6 .8 1.0 .6 .8 1.0

t,
1

1.25. 1.68 2.13 - 1.10 1.48 1.87

.6
.74 .66 .58 .44 .51 .58

1)I1 1.20 1.6; 2.06 1.13 1.52 1.94

.8

*61)'2
.99 ' .89 .78 .59 .69 .78

101 1.15 1.57 2.00 1.15 1.57 2.00

1.0

1D12
1.25 1.13 1.00 .75 .87 1.00

a
Adapted from Cochran (1968, p. 657), Table 11.1.



Table 2

Effects of the Fallibility of a Partialled Variablea

Example ryx2 Yx1 xix2 yx2 xi
rYX204

.3 .5 .6 .7 .00 -.28

.5 .7 .5 .7 .24 .00

3 .5
,./

.7 .6 .7 .4 -.26

4 .5 .3 .8 .7 .45 .57

5 .5 .1.11 _ .6 .7 .42 .37

aReproduced fronrCohen and Cohen, 1975, p. 371, Table 9.5.1.

Note. - -For,all examples, r yy = r22 1.0.



Figure 1

General Struciutal Model for Studying Changea

Pretest

Treatment]

'Background

Posttest

a

Adapted from Wiley and Harnischfeger (1973, p. 48)



'Figure 2

Structural
Modefofthinieincluding Errors of Measurement

u
3

Typical Regression Model for Studying Change



CHARTER III

REVIEW OF METHODS THAT CORRECT FOR ERRORS OF tiEASUREMENT

INTRODUCTION

In t)te previous chapter we established the importance of structural

models for explaining change, proved the bias of OLS regression of

observed scores for estimatifig ihe parameters of the true score

distributions, demonstrated the potential deleterious effects of

measurement error on inferences concerning the determinants of Change,

and considered the requirements for identification.and linearity. Now a

variety of single-equation statistical'methods that have been devised to

estimate the structural equations can be reviewed. Explication of

multiple-equation models and multipie-indicator structural equation

models (e.g., DunCan & Goldberger, 1973; Aigner& Goldberger,1976,

Sorbom, 1978) lie beyond the scope of this repoft. (However, see Chapter

IV.) in this chapter our'attention will focus gxclusively on techniques

which utilize a priori information'about the errors of measurament in the

estimation process. The objective is to draw together techniques from

diverse sources, to express them in a commdn algebra that is synchronous

with the equations of the preceding chapter, and to analytically evaluate

them in terms of statistical criteria, such as bias, power, and

robuatness. The derivations and analytic results should prove of value

to "ducational researchers who wish to estimate the structural parameters

of change. In the first section we will consider the original

attenuation corrections of Spearman and then in succeeding sections four

multiple regression methods that are suitable'for the study of true

change.
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J.

SPEARMAN'S CORRECTION FOR ATTENUATION

Although statisticians have been aware of the4das in OLS regression

caused by errors of measurement. for 4 1.0.ng time (see Adcock, 1878;

Kummell; 1879; Pearson, 1901), Spearman (1904),was probably the first to

derive an'expression for the bias and propose%a method for correcting the

04

OLS estimators for attenuation due to errors in variables. Without

'presenting a proof, Spearman (1904, p. 90) suggested that a zeroorder

correlation could be corrected for the attenuation caused by errors of

measurement by dividing the observed correlation by the product of the

square roots of the reliabilities:

A
ryx Yx

Vf7Y71/1rXX

In psychological research the investigator is usually interested in

the association between two constructs or latent variables and not the

attenuated correlation between observables. Thus, it is fre'quently

recommended that correlations be corrected for attenuation (e.g., Block,

1963). One difficultypearraa rocedure, however, resides in the

fact that a corrected correlation may exceed 1.0, which has g ve le

technique a skeptical audience (A.P.A., 1966). Such arr outcome may

result from sampling error in the correlation or in the reliabilities.

However, Bock & Petersen (1975) have developed a restricted maximum

likelihood estimator of the attenuationcorrected correlation which

cannot be greater than 1.0. An additional-problem has been the lack of

an exact formula for the standard error of a Corrected correlation an4

procedures for hypothesis testing. Approximate formulas have been

offered by Shen (1924), Cureton (1936), Kelley (1947), and Forsyth and

Feldt (1969).

62



Utilizing the finding that the sampling distribution of a corrected

correlation approximates a normal curve, Forayth and Feldt (1969) adapted

Kelley' (1947) fgavulap.prpvide _estimates. of..the .standard error and _tin

test hypotheses baaed on normal distribution iheory:' ACcording io the

results of MonteCarlo studies, their'method gives reasonably good

control of Type I error as indicated by the correspndence of empirical

and nominal alpha levels. In addition, the procedure worked very

'adequately for establishing 90 and 95.per cent confidence intervals for

ryx. Thus, it would appear that for uestions cOncerning the relative

stability of individual differences in an attribute, Forsyth and Feldt's

(1969) method can be recommended.

If one wishes, however, to test the hypothesis of no change or

perfect stability in individual differences in a trait that is unreliably

measured, then a different hypothesis testing strategy should be

pursued. In a comparison of their normal curve procedure with a

modification of McNemar's (1958) test of the hypothesis that the

population correlation corrected for attenuation equals 1.0 -Forsyth and

Feldt (1970) found that the Forsyth-Feldt modification of MCNemar's test

produced empirical alpha values closer to nominalmalues in a series of

simulated experiments (see Chapter IV). In the Meanwhile JUreskog (1971,

1974) has devised a maximum likelihood test that not only evaluates

Ho : ryx = 1.0 but evaluates the assumptinos upon which the McNemar

(1958) and Lord (1957) tests are based. However, JUreskog's coliariance

structure analysis requires multiple measures of time 1 and time 2

status. The conditions under which either the Forsyth-Faldt-McNemar

(1970) test of JUreskog's procedure is relatively superior have not been



determined. Clearly, both of these procedures have useful roles to play

in the study of change. When only single pre- and post-measurements,and

estimates ot the reliabilities are available, the For6th-Veldt-MaNemar

test should be used. These procedures are developed more extensively in

the next chapter.

' When there are measurements available on treatment or background

factors and interest centers on the effects of these variables on change,

an index of effect which has been often recommended is the partial
-

correlation (cf. Bereiter, 1963; CohA & Cohen, 1975; Lord, 1963).. The

partial of interest is the correlation between.final status and the

determinant of change with the pretest partialled out. As.noted above,

this may be interpreted as the Correlation between change and the

-treatment oribackground factor. But if it is computed from fallible

observations, erroneous inferences may result. To overcome this problem,

Speapan's bivariate correction for attenuation has been generalized to

partial and semipertial correlations.

The formulas for a partial correlation corrected for attenuaticm were

first presented by Stouffer (1936a, b) and have since been independently

derived or discussed by Bereiter (1963), Bohrnstedt (1969), Bohrnstedt

and.Carter (1971), Cohen and Cohen (1975), Dunivant (1975), Hotelling

(1933), Hummel-Rossi and Weinberg (1975), Kahneman (1965), Lord (1958,,

1963, 1974), Meredith (1964), Mulaik (1971),40'Connor (1972), Saunders

(195 and Tucker, Damarin, and Messick (1967). To derive the formula

for the estimator of the fully corrected partial correlation, one simply

substitutes into the formula for the true partial correlation



ryx2. xl
ryx2.- ryx1 rx1x2

/ - ryx12) - rx1x2

e three estimators from Spearman

A

rYX1

(r") (;11)

yxi A
, ryx2

v/P(ryy) (r22)

, ;X1X2
/-;x1x2^
(r11) (r22)

Simplifying the expression, the final result may,be wri,tten

^ yx2 r11 ryx1 rx1x2
rYX2.X1

(ryy rll ;yx12) (2211 ;x1x22)

The formulas for incompletely corrected partial and semipartial

correlations, i.e., corrected for unreliability in only one or two of the

variables, are given in Dunivant (1975).

Although social researchers have been urged to use these corrected
gr

rather than the observed-score partiaa5) they have not been given the

means to place exact confidence limits,on or to test hypotheses about the

corrected coefficients. Lord (1974, 1975) Used large sample procedures

to develop the sampling theory of corrected partials. He succeeded in

deriving an isymptptically efficient estimator of the

corrected-for-attenuation partial correlation (which is essentially

identical to the,one arrived by the substitution procedure outlined In

the preceding paragraph). Furè4crmdre, Lord (1975; Stocking & Lord,
5

1974) provides an asymptotic test for the estimator utilizing a numerical

differentiation computer program. Ndting that the estimator could become

infinite because of sampling iluCtuations in the zero-order correlations

of relisbilities, he suggests the corrected estimator "may show very

1 - 5

,
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large sampling fluctuations if theiample is too small, especially if

either Y or X2 is highly correlated with the true scare Xl. The

sampling fluctuations (of the estimator) will in certain cases be so

large as to make the calculation of ryx almost'useless (Lord,

2. 1

1974, p. 215).

While the observed-score partial may lead to faulty inferences about

true.change, it seems that.the corrected-for-attenuation partial may

prove little better. However, in situations where the corrected

coefficient is'finite and the standard error of the corrected partial is

not very large as computed by the AUTEST program (Stocking & Lord, 1974),

inferences should be drawn on the basis of the corrected partial. It is

clear from Lord's (1974) warnings that investigators would be very unwise

to compute partial correlations corrected for attenuation and fail to

estimate their sampling variation. This problem of determining the

sampling distributions of the eatimators corrected.for errors of

measurement will reappear often as the other methods are discussed.

STOUFFER-LINDLEY METHOD

'The first general procedureJor correcting for errors of measurement

in the multiple regression case was proposed by Stouffer (1936a, b) and

developed more formally by Lindley (1947), who proved several theroems on

the technique. Stouffer and Lindley have been followed by many others

who have discovered the correction independently or who have explained

the method, including Bohrnstedt (1969), Bohrnstedt and Carter (1971),

Cochran (1968, 1970, 197), Cohen and Cohen (1975), Cronbach and Furby

(1970),'Cronbach, Rogosa, Floden and Pricd. (1977), DuBois (1957),



DeGracie (1968), DeGracie and Fuller (1972), Fuller (1975), Harnqvist

(1958), Hummel-Rossi and Weinberg (1975), Johnson (1963, 1972)0Kendall

and Stuart (1961), Koopmans (1977), Meredith (1964), Theil (19654 1971),

Werts and Linn (1970), Wiley and Harnischfeger (1972), and Wiley and

Hornik (1973). In our presentation of the method, we will follow Johnson

(1963,\p. 163ff) closely.

Consider the tWo-predictor models presented in Equations 3, 4, 6 and

22 of Chapter II wherrl. X,

of change. The following

is the pretest and X2 is
-

assumptions are made :

E(u1) ...E(u2) E(v)' 0

E(112) = 6u12 E(u22) = s 2
u2.

u "oNID(0,su,2) u2,,JNID(0,su22) voiNID(0,sv2)
4,

E(ule) E(u2e) E(ve) 0

E(u1u2) 41'5111112 E(111V) = Sulv

E(111)(1) = E(111)(2) = E(111Y) = E(112X2) = E(112Y)

We recall from Chapter II that

a
=

2 2 s 2
-A1 ul

. 2 2 .1. . 2
-x2 = -A2 -u2

some determinant

(5)

E(v2) (6)

etJNID(0,ss2) (7)

03)

E(u2v) '8u2v (9)

E(vX1) = E(vX2) = E(vY) = 0

and note the following-identities from regression theory

and

s x1x2 = sX1X2 8u1u2

8yx1 blsx12 b2sx152 sup?

5Yx2 7
x1x 2

+ b2sx
2
2 + 5u2v

6 7

(12)'

(13)

10)



we assume that X, and X
2

have a bivariate normal distribution,
.1"

r

then-Y, X1 and X2 are multinormally distributed. Maximum likelihood

estimators of the population variances and covariances arq given on the

left sides of Equations 11, 12, 13, 14 and 15. Now if ihe population

measurement error variances and covariances are known a priori, then

Equations 11 and 12 can be substituted into 13, 14 and 15. This results

in the following system of simultaneous equa ions for bi and b2

Sl(5x12 su12) 13.2(8x1- su1u2) (syx1 :" svul) (16)

61(sx1x2 su1u2) 4",\!.(sx22 8u22) " (syx2 svu2)

Solution of these two normal equations peoduces estimators for the

structural coefficients for the effects of X
1

and/X
2
on true change

(17)

which are identical in form to those given by Werts and Linn (1970). (To

establish the correspondence, assume that the error covariances equal

zero and use the identity:

. 2 - s 2 . r4.s2 ).
-xj ul jj xj

The reader will also note that the present formulation is less

'restrictive than Johnston's since it allows correlated errors of

measurement.. In actual practice,/however, the extent of such

correlations will be determined infrequently and typically wtll be

ass ed-to be zero. The main point is that the present formulation is

ge-ral enough to tiandle such a situation. Inserting sample y and xj

variances and covarfLices and known population error varlances an,d,

covariances in Equations 16.and 17 and solving yields maximum likelihood

estimates oi bl and b2. The intercept constant and,residual variance

from regression are found in the usual ways. Thus, no great estimation

III 7 8

I ,

6

I
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problems are encountered as long as the observations are based on sample
,

sizes bf approximately 70 or more (cf. Stroud, 1969, ). This will

.

',,. .

virtually insure that the sampling errors of the observed variances do

ti4 th
not cause nPgative true score variance estimates.

'

We now present the matrix formulation for the general case. Without

writing down the exprerionWye assume that the assumptions in Equations

5-10 are generalized to the multivariate case. Then in matrix notation

and

uu

s YX s yx s vu

Substituting the right sides of the last tWo formulas for,the

corresponding quantities in the first equation yields

(S S uu)t ' (j yx s vu)

'Then the solution to the so-called normal equations is

(g xx s uurI (; yx, NW) .

Assuming that the matrix inverse exists, the method will yield a

(18)

(19)

(2,0)

(21)

(22)

unique estimate of the vector of structural coefficients. Of course, b

is a least squares estimator of b under the stated assumpt5ons. Lindley

(1947), Kendall and Stuart (1961) and Cochran (1968, 1970.) present these

results in a slightly,different way. According to their formulation the

estimate of the structural coefficients is expressed as a weighted

function of nbserved (biased) regression weight vector, the error,'

variances and the predictor covarlances. Since

9



and

then

S' b' m sxx xy

(S xX S uuY b S xx b'

b (S Xx S uur

(23),

(24)

(25)

(26)

It should be aliparent that the procedure outlined by:Cronbackand

Furby (1970) for correcting the observed variance-codhance matrix lead

to the same solution as Johnston's since sxj2 - 6.92 m rjjsxj. If the

covariance matrix is standardized, i.e, transformed to a correlfrtion'
,

matrix, then rjjsxj2m (rjj)(1) m rji become the diagonal elem ts which is

Stoufier's (1936a, b) method.. If SCOufferi corrected matri (a

correlation matrix with reliabilities on the diagonal) is standardized

(i.e., transformed into a Correlatioq_matrix with unities n the

principal diagonal), then we have a correlation matrix corected fort

attentuation by the Spearman formula given as Equation li Meredith
1

(1964) described the application of multivariate statisiical techniques,

,Q.g., canonical corelation, to the attenuation-corrected correlation

matrix. This method producesstandardized pdrtial regression

coefficients which can be rescaled'in the metric of,the true scores as

Cohen and Cohen (1975) describe. It should be apparent that ik we

calculate partial correlations from any of the Co matrices

described in this section, the coefficients will equal those lculated



hy the SpeariOn-based formulas given in the preceding section. This

identity suggests that there may be problems in specifying the sampling

theory for the estimators of the structural parameters computed from the

observed covariance matrix corrected for errors of measurement.

There are at least three potential problems when one wishes to

Iestablish confidence liMits and test hypotheses bout the structural

coefficients. First, sampling error in the observed variances and

covariances may produce a corrected matrix which is nonGrammian and

therefore not admissable as a covariance matrix (Bock & Petersen, 1975;

Fuller & Hidiroglou, 1977; Williams, 1959). Second, the population error

variances or reliabilities will be estimated from prior.studies rather

than being known. Satpling errors in the error variances can have the

same dameging effect as sampling errors in the observed variances and

covariances. Furthermore, thisRontributes another source of variability

to the estimated regression coefficients 'which ig not represented in the

formulas for the standard errors of the b . Thus, confidence intervals

and hypothesis tests will be approximte at best (Cohen & Cohen, 1975;

Fuller, 1977; Warren, White, & Fuller, 1974). The third problem ilhich

may be encountered is the exacerbation 'of the first two problems hy

multicollinearity in the data, specification error in the model, etc.

Although some have recoimended the use of the standard formulas fOr

calculating F- and t-ratios and standard errors (e.g., Cohen & Cohen,

1975), these potential problems should give the researcher a skeptical

attitude when interpreting such statistics. It may be noted that if an

expression for the standard eircir could be written which included

information about.the sampling error oftthe error variance or



reliability, Stocking and.Lord's AUTEST program could be used to provide

an asymptotic tgst. ,

Befqre conchiding this section we-consider the issue of analyzing the

effects Of treatment or background groups on change via the
4 ,

Stouffer-Lindley method. As in a regular multiple regressioh analysis,

information.about group effects may be represented in a variety of ways

by means qf dummy-coded vectors. Analysis of covarianceican be handled

in this way as described earlier on; but what are consequences of
.

. ----
.-

including dummy-coded variables in the corrected covariance matrix? Four

questions arise when we try to evaluate the effects of treatment or

background group charscteristics on change by means of dumMy-coded

variables. First, what is the consequence, of violating the assumption of

multrvariate normality which will result from the inclusion of dummy

variables? ,Second, can the procedure of testing for heterogeneity of

regression slopes/by means of product vectors be extended\ to-this-

attenuation-correction-method? Third, what are the effects of

.,heterogenous error variances or reliabilities between oups on the

corrected estimators? And, firiallyphow,can error of measurement

(classification) in the group factors be incorporated into the analysis?

Particularly in field or quasi-experimental studies, errors of this kind '

may be present,-e.g., racial or ethnic group membership, SES status, or

culturally disadvantaged. Another way of stating this problem is that

the selection rule for assigning individuals to groups may not be exactly

known. Recent progress on this problem has been made by Aigner (1973),

Cronbach et al..(1977), Games (1975), Mouchart (1972, 1977),'and Murray
4,

(1971). To conclude thii sectdon we remark that even though the



10014*
Stoutfer-Lindley method has been around for quite some time, there is

still a great deal to learn about its performance in 'practical

applications.

*4.

STROUDrS METHOD

Stroud, (1968, 1972, 1974) has developed an asymptotic chi-:square test

of the hypothesis of equality of conditiLonal means ald variances of true

scores for two groups, which is based on unrestricted maximum-likelihood

estimators described by Wald (1943). The estima4 of the covariance

matrix for the latent variables is the same as that.for the

Stouffer-Lindleyillethod. Howeter, the covariance matrices for the two

groupkare each scaled in the metric of the error variance which is

assumed to be the same for both groups. This implies that when the group

variances on differ, that the reliability of for groups 1 and 2xj xj

must not be equal. This is in accord with the traditional psychometric

assumption that it is the measurement error variance raither than the

reliability (or, equivalently, ate true score variance) which is

invariant across samples of"a population.

The rescaling of the covariance matrix leaves,all of the

scale-invariant statistics unchanged, e.g., r
XY

1

or 1-r 2
YX

1

tritls, the standardized results of regression analyses by the

Stouffer-Lind1e and Stroud methods are identical, e.g., correlations,

standardized pa tial regression weights, and significance tests.

However, the s ale-dependent statistits are not unaffected by the

2
rescaling. T erefore, the b

j
or s will not generally agree

between the two methods. This reviewer recommends that Sttoud's



estimates of the rawA3artial regression coefficients and the residual

variance be rescaled to the metric of the truescores (to conform with

the Stouffer-Lindley estimates) for purposes of interpretation and

description.
1

The contribution of Stroud's method is that it provides a

significance test for the homogeneity of regression for two sanples.

Thus, it could be used to draw inferences about the differences in change

between two groups'. Unfortunately, the generality of the method is

limited by the fact that (a) sampling error in the estimates of the

variances of the measurement errors is not taken into account, (b) the

method has been formulated for only the two-sample problem (although its

author comments that the generalization is straightforward), and (c)

separate tests of the intercept and slope parameters are not given so

(that tests analogous to ANCOVA's tests of differences in adjusted

posttest means (or gain) are not possible. A strength of the method is

that a multivariate generalization, i.e., nmltiple dependent variables,

which uses Lord's AUTEST program, has been developed (Stroud, 1968, 1974). ,

FULLER'S METHODS

During the past decade Fuller and his associates have d Wsed several

procedures for correcting for errors of measurement. We will pres4t in

detail his most general formulation (Fuller, 1980) and then the related

techniques more briefly.

The model and assumptions posited by Fuller (1980) for his case (i)

are virtually identical to those stated for the Stouffer-Lindley method.
-

Particularly, errors in the model (e) as well as errors in variables



(v u ) are permitted aud assumed to follow a multivariate normal

distr ution. Furthermore, covariances between errors may e nonzero.

Fuller (1980, p. 7ff) defines the estimator of the structural rameters

as

(fi 4' a g u) -1 (2 + a
r-r

where a > 0 is a fixed real number

4yx (g n 71)a vu

;572
_tyx I

xy xx

g is the smallest root of ig - gIl

07.0

UV uu

uv) . (27)

if i 1 + n -1
(28)

if i < 1 + n -1

if i 1 + n -1
(29)

if < 1 + n -1

*(30)

0 , and

(31) -

This estimator of b differs from the Stouffer-Lindley estimator in

two important ways. First, ihe modification associated with g

.1.

guarantees that H is a positive definite matrix, that the estimator of

s
2

is positive and the estimtor of b possesses finite variance . . .

.The a-modification gives an estimator that is similar to the 'k-class'

estimators used in simultaneous equation estimation" (Fuller, 1980, pp.

7-8). This latter modification produces smaller MSE of the coefficients

in finite samples.

These modifications represent two4important advances over the z
Stouffer-Lindley

1

t hnique. Furthermore, Fuller (19805 provides a proof



of a theOrem on the limiting distribution of b which demonstrates that

the estimator is asymptotically normal and unbiased and specifies the

covariance matrix of the estimator in the limit so that large sample

confidence limits and hypothesis tests are possible. This limiting

sampling distribution assumes.that the population measurement error

variances are known. For a more restricted model, however, which assumes-

uncorrelated errors and incorporates the a-modification, Fuller and

Hidiroglou (1978) provide an estimator pf the limiting distributiA of t
4

which includes information about the variability of the reliability

estimates if available. Under the more restrictive conditions, Fuller,44

and Hidiroglou (1978, Theorem 1) prove that

n 1/2 - b)-->N(0, S -1 G S -1)XX XX (32)

where the elements of G are functions of the,true XiXi covariances
sni

'and the ratios of error variances to total variance, e.g., i
2

xi

If the are arranged in a diagnoal matrix as

uu diag ( Ill* 122*
* 1.11) *

and if there is information about the sampling error of the 1

available in the form

n ;/2 a 7 1) N(0, P)

then

n 1/2 (- b) S G S'x(1 + F P F) ,

where 1,//

F diag (b15x1x12 , b2sx2x22 , , bjsxjxj2 ) .

For the first (and only) time in this review we find an expressiqh

(Equation 35) for the sampling distribution of t which reflects the

70

(33)

(34)



additional source of variation in bi introduced by the imprecision in

estimating r or s
u

2 (See also.corollary 3;2 in Fuller (1975,
ij

p. 127). Of all the techniques that have been considered, Fuller's

Methods appear to produoe estimators with the most desirable properties.

It is hoped tliat researchers involved in studying change will begin to

.1use these estimators so that the usefulness'of F )er's methods in

practical sizesamples can be evaluated% Fortunately, computer programs
t'

are avaiieble for performing these analyses (Hitdiroglou, Fuller, &

Hickman, 1977; Wolter &.Corby,. 1976). A program for performing Fuller's

disattenuated regression program written in the OMNITAB programming

language as part of this research (Dunivant, 1978a) appears in the

Appendix.

Two additional procedures which have been developed by Fuller and his

associates deserve mention before leaving this section. Models of

curvilinear regressions with fallible measurements have been propo6ed by

Wolter (1974), and Wolter and Fuller (1977a, b). These methods may be

useful in describing the growth curve for an attribute as a function of

level of initial status. An analysis of covariance model has been

developed by DeGracie (1968) and DeGracie and Fuller (1972). Their

procedure co1ntains 4'ga:edification similar to the gmodification described

above which guarantees the existence of the variance of the

pooledwithingroupsslope estimator. The estimator of the slope

parameter in ordinary ANCOVA is defined for the observed variables as.

'1
Yxl

sxl2
(37)



where these are pooled-within-groups coefficients based on the fallible

scores. The estimator of the structural parameter which represents the

slope of the pretest cin posttest regression following the

Stouffer-Lindley method would be

1:11

sYx1

;x12

yxl

ax12 ;1112)

.438)

.DeGracie and Fuller (1972) investigated the properties of tlWo

estimators of the slope which we present here under the assumption of

E(uv) 0:

11''DF1

where

syx1

=
;xl

2 if ;x2 - ;112 > (1/m)su12-
ul

2

2
\ Isx1

(1/m);1112 othOrwise

and m equals N minus the number of groups minus one. The second

estimator was sugg sted by an examination of the bias in bl and is
DF1

given by

IhDF2

A

Yx
2 + 1/m 2; 4ul 2;114

(2sol2

sx1 Psxl,

(39)

, (40)

where p a times the number of replicates per group and m (as above) is

a fixed positive number. DeGra0.e and Fuller (1972) prove that bl
DF2

has a smaller bias and smaller mean square error than bl . They
D#1

present an'extension of classical F-ratio to test the null hypothesis of

sr,



no adjusted group differences in final status or gain. Although this

inferential devile does not take int.() account tfit sampling error of

2 -

s
u

, it is probably a much more appropriate test statistic than
1

the uncorrected F for investigations of change.

PORTER'S METHOD

The final method to be reviewed was formulated by Porter for his

doctoral research in 1967 and has been cited frequently since then. The

technique has been more fully elaborated in Porter and Chibucos (1974)

and Olejnick and Porter (1981). A very similar method was proposed

independently by Hunter and Cohen (1974).2 Porter's method, called

estimated true score analysis of covariince, has much intuitive appeal:

one uses the traditional psychometric formula to estimate each

individual's true pretest score and then substitutes it for the observed

score as the covariate in ANCOVA.

The estimating equation for true scores for person k is given in most

psychometric texts as

Rk ;xx (xk --R ) R (41)

which is'simply a linear transformation of x Thus, for sta9stical

procedures that are invariant to linear transformations, e.g., multiple

regression, correlation,'ANOVA and ANCOVA, use of either x or X produces

identical results. For example, b
yx

= b
YX

and r
yx

= r .
YX

In ANCOVA, however, all individuals may not be sampled from the same

--
population, so that there'is not a common mean x on which to regress the

observed scores. For the case of preexfsting or nonequivalent groups,

uneilual pretest means are usually observed and offer the possibility of

regressing an individual's pretest score toward his or her group (h) mean:
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Xk (xhk Rh.) 2h. (42)

Whenever pretest mean differences occur, Equations 41 and 42 Will

yield different results, and Equation 42 no longer specifies a linear

transformation of x across all samples or groups represented in the

study, i.e.., rxx < 1.0. Wertg-and Linn (1971) discuss the choice of

Equations ,_1 and 42 as depeakng upon whether the group means are

considered fa, ible. If so, Equation. 41 will regress them toward the

grand mean. But since doing this produces results identical to those

obtaned with the observed covariable, use of Equation 41 will not allow

us to estimate and test the structural parameters of interest. Thus,

despite claims to the contrary, Porter's method will not produce the

desired result's if there are no covariate mean differences.

Additionally, if the covariate means are deemed tnreliable, i.e.,

E(u) 0 within groups,the method of estimated true score ANCOVA fails,

sinde it is equivalent to4.he observed score analysis. (It should be

noted that the method in these cases will yield the appropriate estimate

of. hot7ever , b131,
2

, or the estimate of adjusted mean differences will

be biased and equal to the OLS estimator b'2.)

What are the properties of the estimators obtained by Porter's method

when there are pre-existing differences between the groups? First of

all, the pooled-within-groups estimate of the structural slope parameter
P

will be properly estimated as bl. Second, since the estimated true

pretest group means equal the observed group means)\the estimate Of group

effects or differences between adjusted posttest means will correspond to

the structural estimator. For the two group case Porter's metho,d yields

the foliowing estimator of the treatment effects structural parameter:

III - 20

Su
a



72. Yi. ti (12. Ri.) Li (x2. xl.) (4.3)

The final estimator of interest in ANCOVA studies of change is the

e/ 2mean square error or residual. variance, sy.xj = se 2
It is

easily shown (e.g., Porter, 1967, p. 36) that Porter's method yields a

biased estimator of the residual variance; in fact, Porter's estimator Is

identical to the OLS estimator se12. Since 5ef2. se2generally, the fit of the

structural model will not appear as good as it really is. The hypothesis

'test of the between-groups factor should be conservatively iased by'use

of the inflated estimate of MSE. HoWever, this bias migh e otfset by

the increase in MSE due to estimation of r11. The trad -off between

the upward bias in the reiidual variance and the fail re to include the

sampling error of the reliability coefficent as a s rce of variation in

the estimators of the structural parameters could be suffii.lent to make

the method work reasonably well in actual research.'

The results of Porter's (1967) Monte Carlo studies indicate that the

empirical alpha values for the estimated true-score ANCOVA F-test of

adjusted posttest means only slightly exceed the nominal alphas, e.g., an

epapirical alpha of .075 compared with a theoretical value of .05. This

does not seem unreasonable in view of the fact that Porterls estimated

true covariate scores.were based on reliabilities calculated as

test-retest cOrrelations based on-sample sizes of 20 to 40. POrter's

Table 20 (1967, p. 100) indicates that the sampling distribution of this

reliability estimate can be badly rkewed for moderate values of r and
, xx

have large standard errors. It would be reatonable to infer that the

variance of an ANCOVA estimator'derived yithin the framework of the

Stouffer-Lindley method, e.g., Cohen & Cohen (1975) or Cronbach & Frby,
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(1970), would be underestimatedv-sometimes substantially so--because of

the failure to incorporate the sampling error of the reliability of the

pretest. This-fact would contribute to a liberal bias in the usual

F-ratio based on the strural estimators, i.e., the null hypothesis of

no group effects on change will be rejected too frequently.

porter's method canot be extended directly to the multiple regression

case, because there is only a single sample. In that case estimated true

and observed scores would be perfectly correlated. However, something of
-

the logie of making the _reliability corrections within groupl has been

captured by Hunter and.Cohen (1974) in their 77timated true-score

multiple regression analysis. Following Lord (1956), thy

G -

multiple regression estimates of Xi based on xl and X2 and-of X2 ,

based on xl and x2. (See Aunter & Cohen [1974, AppendiX II] and Lord

[1956] for the expression for weights associated with(x1 and x2.)

Although Hunter and Cohen (1974) do not deAlop the saip ing theory for

their estimators, they provide a general model that will handle

-cprvilinear relations-.

APPLICATIONS OF METHODS TO REAL DATA

In this section we review analyses of actual data-made by means of

one of the correction-for-attenuation methods just presented. Are

inferences about factors which affect change different Ior the

observed-score and structural models?

Several test-retest data sets have been analyzed by both,the

Stouffer-Lindley method and OLS regression of the obeerved scores.

Dunivant (1977a) examined the relationships of type of nursery school

8 2



program (treatment), age and sex (baCkground characteristics) to change

in sex-role identity over a nine-month interval. A composite test based

on five measures of sex role identity with an esiimated reliability of

.75 waS adoinistered to 400 children in September and again in May.

These data were submitted to a multiple regression analysis of the

Observed scores and to the correction-for-attenuation regression

procedure described by Cohen end Cohen (1975). The results of the two

analysei-differed in many important respects. There was even one

instance of sign'reversal for one of the treatment-background factor

combinations. That is, the observed score analysis indicated that one
-

, combination of factors significantly facilitated change while the

struCtural analysis indicated that the combination inhibited growth.

This example clearly demonstrates the errors of inference abtrit change

that can result from:errors of measurement.

.In-a major reanalysis of Project Follow Through dataigqing Cohen and

COhen's (1975) method; St. Pierre and Ladner (1977) fourid no effects

whicirdiffered in Sign between the corrected and uncorrecr.ed ANCOVAs.

However, the percentage of changes in inferences about treatment effects

on gain from the observed score to the corrected ANCOVA was as great as

21% when a pretest,reliabilty of .6 was assumed, e.g., from null to

positive, negative to null, etc. The means of the stdhdard.errors for

their gignificance tests were all smaller than .those froth the unCorrected

ANCOVA. They concluded that "correction of the pretest for assumed

unreliability can lead to changes in the conclusions thal an evaluator

reaches in terms of the rank order ofrspoasors as well as the overall

level of program effectiveness .(across sponsors)" (St. Pierre and Ladner,
-

1977, p. 21).

;
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Stroud (1972) used his method of comparing regressions based on

fallible data to determine if the'pattern of change in school achievement

differed for males and femalea between the.almth and eleventh grades'.

The esults of his asymptotic test for equality of regressions and

coritional variances did.not differ from those of the uncorrected

regressions.

Several applications of FullerJs methods have been presented: Only

one is-directly relevant to our present concerns (see below). Rindskopf

(1976) used DeGracie and Fuller's (1972)-disattenuated ANCOVA method to

reanalyze data from the national Head Start evaluation (Circirelli, 1969)

and Glass's (1970) evaluation of ESEA Title 1 programs. When low

estimates of pretest reliabilities were used, the DeGracieFuller method

yielded different conclusions than did uncorrecte4 ANCOVA for both

evaluations. Specifically, Head Start-produced significant sains in

Metropolitan Readiness Test scores for black children according to the

DeGracieFuller tests hut not according.to traditional analysis of

covariance. The analysis of Title 1 reading scores using classical

ANCOVA indicated a significant negative effect of participation. When

lowerbound estimates of reliability where inserted in DeGracie and

Fuller's method, however, the differences between control and treatment

groups were not significant.. Rindskopf's (1976) reanalyses provide

another important demonstration of the potentially deleterious

consequences of measurement error in drawing inferences from analyses of

observed change using analysis of covariance.

The other applications of Fuller's methods are not suitable for our

purposes because either they do not relate to change, or they do not

fre



report comparisons with observed score regressions. However, the

examples do demonstrate that the IT'j can either underestimate or

4Loverestimate the b (Fuller and Hidiroglou, 1977; Warren et al.,

1974). Add4ionally, the Warren et al. (1974) analy is of minagerial

role perfdrmance yielded estimates all of which had larger standard

errors than-those from the corresponding ordinary ression. They

suggest that this result is almost always to be expected. When comparing

the 1Yerformances of Porter's (1967) and DeGracie and Fuller's (1972)

methods with real data, Rindskopf (076) observed that the sampling

riances of the Degracie-Fuller estimators always 2cceeded th se of

Porter. 'These results provide some support for Warrn et al. ,(1974)

speculation- Contrast this with St. Pierre and Ladner's (19771_decrease

in standard errors with the Stouffer-Lindley method.

Rindskopf (1976) also provided a demonstration of the use of Porter's

(1967) method with Head Start and Title 1 ESEA data. He found that the

corrected results,from Porter's method contradicted those from classical

ANCOVA in the sate ways that were described above for the DeGracie-Fuller

method. Porter's method appeared to be more powerful than that of

DeGracie and Fuller leading Rindskopf (1976) to recommend it, especially'

in situations where the covariate has low reliability. This conclusion

must be regarded somewhat skeptically, however, sinc,d it appears that

some of Rindskopf's corrections where invalid, since they created

nonGrammlan covariance Matrices. Although the Degracie-Fuller method

insures that such impossible matrices will not be constructed, Porter's

ANCOVA correction method does not. Researchers wishing to apply

correction methods in order to estimate true-Score effects must be
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careful with both the Porter and Stouffer-Lindley methods to use

reliability estimates that do not generate impossible data.

Olejnick 4nd Porter (1981) iecently pointed out some important

considerations in applying Porter's correction method aAO additional

illustrations of its application. Porter and Chibucos (1974) furnish a

hypothetical example in which the Observed score and estimated true score

ANCOVAs lead to different inferences. They conclude that the estimated

true-score ANCOVA should be used to evaluate change, when the pretest is

fallible and pre-existing differences between the groups obtain.

CONCLUSION

This concludes ourreview of the major correction-for-attenuation

methods which can be used test-retest studies of change where information

7. about the reliability of the pretest is available. We have c011ected and

analyzed methods from statistics, education, and the social sciences.

The'methods of Porter (1967), Stroud (1972), a d DeGracie and.Fuller

. 1(1972) can.be used in situatlons appropriate for the analysis of\

covariance. Of these, Porter's and DeGracie and Fuller's procedures have

the more general applicability. The exactness of Stroud's method, ,

however, strongly commends it for the two-grJup design. The

DeGracie-Fuller method appears less.powerful than Porter's but this

disadvantage may be 4/Offst by reduced bias and greater safety.

For the more.general mu1t1151e regression kinds of analyses (including

-ika7VA), researchers may select one of the Stouffer-Lindley or Fuller

methods. It seems clear that for data which conform to the usual

assumptions Of normality, hoioscedasticity, etc., the statistical

4
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estimation and testing:procedures developed by Fuller (1980), Fuller and

Hidiroglou (1978), ana Warren et al. (1974) will prove superior to the

Stouffer-Lindley methods. Not only are Fuller's methods Safer in the

sense that they preclude the estimation of singular covariance matrices

(of the -pred ctor variables), they yield significance tests Which ard

valid for fin te samples. We have been unable, however, to establish

anarytically which technique possesses greater power. This issue is
.

addresszd in the simulation studies reported in Chapter VII.

It can be concluded from our review that most of ehe problems

.associatld with estitation of the true-score regression weishts have been'
4

-
solved by the proposed methods. The unsolved problem of greatest

importance involves the unbiatted estimation of the sampling variances of

the-disattenuatea regression coeffidients and the validity of associated

significance tests. This Chapter has helped to clarify and'refine thes'e

issues, and the simulation studies reported below add further insight.

Questions involving the type of reliability estimate to use and the

heterogeneity of regressions constitute important_prob_l_ems t at need to

be addressed in future research.

The applications of the correctfbn.methods to real data amply

, illustrated the kinds of errors of inference that marhave resulted from

errors of measurement in previous investigations of educatioral change.

It is hoped th`at'the explication and evaluation of the

attenuation-correcaon methods provided in this chapter wll encourage

and facilitate their use 1/11 future studies.
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FOOTNOTES

. 1Note thaethis is in contrast to Stroud's (1972) suggestion 'that the
Appropriate bl are 'apse from the rescaled covariance matrix.

2An approximate method, which is very similar in definition to Porter's,
has been proposed by Corder-Bolz (1978) and evaluated in simulation studies.

J



CHAPTER IV

ESTIMArION OF LINEAR FUNCTIONAL RELATIONS

INTRODUCTION

The purpose of this chapt.er is to analyze the problem of determining

if a perfect linear relation exists among two orMore variables and to

review some statistical methods that havebeen developed to estimate and

test linear functional relatirms. By,definition, a linear functional

relation (LFR) exists if the true scores on two (or more), measures are

perfectly correlated: Although most of the statistical work on LFR has

been done by econometricians, a problem has been investigated which is

formally identical to LFR in the field of psychometrics.

*Psychometricians have developed several statistical tests of the

hypothesis that two scales measure the same attribute except for

differences in means, units of measurement, and standard errors of

measurement (or reliabilities). When scales satisfy these conditions

they are said to be equivalent or congeneric. As is demonstrated below,

equivalent tests are related by a linear functional relation. The

correlation between equivalent measures, i.e., between two variables that

have a linear functional reletion, when corrected for attenuation

(unreliability) is 1.0. In this chapter the diverse theOry and methods

fromeconometrics, statistics; education, and psychometrics are

collected, compared, and integrated. Several new results are derived for-

the errors-in-variables problem which should prove helpfu!. in analyzing

change occuring in measures which contain Srors of measurement.

Testing hypogheses about LFR or'the equivalence of measures has wide

application in the analysis of change, although this has not been
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recognized heretofore. LFR methods could be utilized in test-retest .

studies which are designed to provide separate estimates of unreliabiity

and instability in the measures (see Heise, 1969).. Since UPR represents

a specific model specification about the ielatiOn of th ,R. pretest. and

posttest scores,Li.e. no stochastic eribr (see Fuller, 1980; Ise'ac,

1970), LFR methods could be,used like any of the methods in the.previous

chapter to estimate and test hypotheses about change. This has been done
Jr.

previously in economics but not in educational research. Some of the LFR

models could'be usefully applied to the problem of ..;nferring causal

effects in cross-lag panel correlatiom In the context of the general

(LISREL) formulation of change in latent variables presented in the

second chapter, some of the methods for assessing the equivalence of

scales could be employed to evaluate the adequacy of the multi-indicator

measurement models relating the observed to the true scores. Finally,

LFR methods could provide Valuable insight concerning the invariance of

measurement metrics and-validities over time and between groups in

program evaluations (see Bejar, 1980).

It is hoped that this review of LFP methods,and the derivation of new

results will prove of value to eC.ucational reseaichers who are concerned

with the preceding problems and statistical methods. The remainder of

,4D

this seetion,is devoted to giving a precise mathematical formulation of

linear functional relations and equivalence. In the next section

definitional issues concerning various types of equivalent measures are

discussed. After notation and dataolayout conventions hava been

ittroduced, methods fel. determining LFR are reviewed. The methods are

organized "according to ihe type of information they require. Thus, the
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review is divided into procedures that require replicate measures and

-those that use infoimation about the variances. of the errors of

measurement.

For.the purpose of expovition let us assume that the following simple

measurement model holds for two observed tests, x and y:

x a X + e , and (1)

y a Y + e (2)

where x and y are observed scores, X and Y are unobserved true scores or

latent variables, and e
x

and e aril random errors of measurement. By

definition x and y are functionally related measures if the correlaion

between the true scores X and Y is unity, i.e., they are equivalent.

Although generally x and y will be pre and posttests, respectively, the

model does not require this.

The correlation among the latent variables can be estimated in

several ways. If the reliabilities of the tests are known, then the

correlation between the true scores-(r ) can be estimated by applying
YX

SpearMan's (1904a, 1904b, 1907, 1910)\correction for attenuation to the

sample correlation-between the observed variables (i ):
yx

yx
V/Tfyy) (fx4)

If there are multiple measures or indicators of X (say, x
1

and x
2

)

and Y (say y3 and y4), alternative estimators of ryx are

available. For example, Lord (1957) givels the maximuk likelihood

(3)

estimacric as

Yx

g
13

+ g
23

+ g
14

+ g
24

4 v/Ig
12

g
34

Iv 3

(4)



"'Lae

'(For alternative formulas based on the same covariances, see Kelley

[1947] and'iierts & Linn [1972].) Given ar-partic4lar estimate of rxy,

the problem is to test the hypothesis that in the population ryx =.

1.0. The null and restricted alternative hypothesis may be written:

Ho : ryx = 1.0,

H
1

r
YX

<1.0.

It is also possible to express these hypotheses as tests of

restrictions placed oft the linear model relating Y and X. Recognizing ,

that '1 and X may differ in their means and their scaling or units of

measurements, we write

gl Y = c g2X

where gl and are scale coefficients and c is a constInt which is a

function of the differences in means between Y and X. Sin& gl and

g
2
can be absorbed into a new coefficient g = g

1
/g

2
and a new

intercept defined as a - c/g1, Equation 7 expresses Y as a linear

'transformation of X. Note that the.structural modA given by Equation 7

does not include a stochastic term to incorporate the e2fects of chance

distrubances or miAspecification into the model. As stated, it holds

that a perfect linear relation exists between Y and X. This is referred

to as a functional relation En-theatistical literature (Isaac, 1970;

Kendall & Stuart, 1961).- The null and alternative hypotheses to-be

(5)

(6) , N

(7)

tested are:

Ho : glY - g2X - c = 0,

H1 : glY - g2X - c 0 0.

(8)

4t should be apparent that since correlations arE. Invariant over Olanges

in scale and origin, the null hypotheses given.by'Equations 5 and 8 are

the same.

IV-
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There is a third way of formulating the model that will prove useful

in developing some of the statistical tests of equivalence. To Equation

7 we add an error term f representing random fluctuations in.the fit of

4 the-model:

g1Y c g2X-+ f (10)

If the model fits the data perfectly, the error ha the equation, f, will

,be identically 0 for all members of the population. Thus, the hypothapis

of equivalence or perfect linear relation among true scores X and Y can

be evaluated by testing if.the variance of f exceeds zero
,

Ho : sf
2

0,

H :

f

2>
0.

1
(12)

The null hypothesisigiven in Equation 11 is the same as those in

Equations 5 and 8.

A variety of different Ways of testing Equations 5, and b, and 11

under various iypes of assumptions have been proposed. In order to

explicate these methods and their assumptions we now define equivalence

and'present Jöreskog's model of cofIgeneric tests.

. DEFINITION OF EQUIVALENCE AND CONGENERIC TESTS

In the development of classical test-theory the concept of strictly

parallel tests has played a crucial role. Strictly parallel tests by

def91Xn are tests which have equal means, equal variances, equal

covariances equal validities with respeCt to any criterion. It

follows that parallel tests have equal standard errors of measurement and

equal rel./abilities. A person has the same true score on parallel tests

(Gulliksen, 1950; Lordre..Novick, 1968). Gulliksen (1968) argues that



scores on parallel tests are completely "interchangeable.". That is,

scores from one parallel test can be substituted for those for-another

parallel test without any loss of information whatsoever. Obviously,

parallel tests satisfy the criterion for equfvalence, that is, rhey

measure the same trait except,for errors of measurement. However, other

tests, which do not meet the rigorous requirements for parallelism,

likewise*satisfy the criterion. For example, .tau equivalent tests, i.e.,

tests which meet all of the requirements for parallelism except that they

have different standard errors and consequently unequal reliabilities

(Lord &-Novick, 1968), measure the same underlying attribute. While tau

equivalent tests, measure the saMe zonstruct, rhey do so with varying

degrees of accuracy (reliability). The model for ssentially tau

equivalent tests goes even further by relaXing the restriction on equal

means. Thus, an individual will not necessarily have equal true scores

on essentially tau equivalent tests; however, all true scores on one

essentially tau equivalent test will differ from those on another

essentially tau equivalent test only by a constant.

The most general model for tests that measurd the same attribute

.except eor errors of measurement is aireskog's (1971) theory of

.gongeneric tests. In this model almost all of the restrictions on

parallel tests have been eliminated. The tests need not possess equal

true means, egittal true or error variances, or equal reliabilities.

Iridividuals do not have to have equal true scores on congeneric.tests.

This implies that cougeneric tests have different origins, or means, and

different scalesOr"or units of measurement. However, true scores on one

congeneric test are a perfect linear function of trUe scores on another..

9,1
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congeneric test. Congeneric tests meet Gulliksen's (1968) criteria for

"scientific equivalence," that is, tley measure the same underlying

attribute. In factor analytic terminology congeneric tests reflect a

single general common factor. Thus, although oongeneric tests dre not

strictly inter-changeable or substitaable and do not'possess equal

accUracy, they contain information about the same7-latent variable which

underlies each of the tests. A detailed comparison of the various test
_

models is Provided in Table 1. Throughout the remainder of this chapter

we shall

Insert Table I about here

use the terms equivalent and congeneric gynonymously. For most research

. applications it is the congeneric type of equivalence that .:111 be of

interest. Now these ideas about the equivalence of measures is given a

more precise mathematical form by developing Jdreskog's (1970, 1971,

1974) theory of congeneric tests.

Let us assume that there are two replicate measUres on each of two

scales x and y. By definition xl is congeneric with.x2, And y3 is

congeneric with y4. While the replications may represent two a te
;

forms or test-retest measurements on the same test, in most cases ths e

replications are obtained by splitting tests x and y into halves-. Such

split halves may or may not be parallel; but they muat be congeneric for

the following developments to hold. These congeneric replicates or

multiple indicators are necessary in order to identify the parameters of

the true and error distributions. Without the additional information,

provided by the multiple meaaurements the tripe score correlation cannot



be estimated or tested ggainst a hypothesized .vallie (e.g., 1.0). The

reader is referred to the text by Hanushek and Jackson (1977) for an

,_excellent.introduction to -07.kproblem of identification.

According to classical theory the observed scores can be written as a

"-
linear composite of true and error components:

xi = Xi + el,

x
2

= X
2
+ e

2'

y3.= Y3 + e3,

Y4 Y4 e4

Where X
1,

X
2'

Y
3
'and Y

4
are true scores an the ej ate random

errors of measurement. Under the classical as tions true scores are

(13)

(14)

(15)

(16)

not correlated with errors, and errors are all mutually uncorreiated.

Since by definition the correlation between cogeneric tests is 1.0,

'

rxix2 = ry3y4 = 1.0. Therefore, new random variables X and Y can be,,

defined which are perfectly linearly ;elated to the true scores on the

individual tests Xi, X2 and Y3, Y4, respectively, as follows:

X
1
= ml + blX

X =m +b2 X
2 2 '

Y
3
=m

3
+b3 X

'

Y =m
4
+b4 X

4 '

Substitution of Equations 14 through 17.into Equations 10 thropgh 13

yields the congeneric measurement model:

xl = ml + blX + e (21)

x2 = m2 + b2X + e
2' (22)

y3 m3 + b3Y + e3, (23)

Y4 7 m4 bItY e4, (24)

8



irL matrix fori this result mgy be written

x
1

x2

y3

my?'

m2

m
3

414

-
b
1

0

b
2

0

0 b
3

0 b
4

i
.

Yi+
s

e
2

e
3

e4/
OM In

-

t + (25)

where-x is a ;motor of observed scOres for an individulp m is a vector

of means, 4 is a Matrix of scaling coefficients, t is a vet K of true

scor76, ania e is a vector of errors of measylrement.

Withopt loss of generality we take the true scores to be,expressed in

standardized forms (goo . A (Y) = 0? VAR (X) = VAR (Y) = 1.0).

Then the structural model relating s. to X is

101Y. = g2X, or alternatively

gl
Y = gy- X = gX, and

the covariance matrix of the vector t is

-

(26)

.(27)

1.0 rxy
[

*
,

ryx 1.0
,

,

.(28)

i

From I5reskog's.(1970) covariance structure analysis the covariance matrix ,

ok.obseirved variakles can be written as a function'of the parameter

matrices

811

821

831

841

812

822

832

'842

813

823

933

943

814'

824

834

844

:

-4

0

42 0

0-b
3

O b
4

1

1.0

KY

r

1.0

Xyj b
1
b
2
04. 0

0 0 b
1
b
2

-;



s
el

2
0 0 0

0 s
2

0 0

+
e2

0
20,

1.

,

'0

0

0 0e3

s

se42

-
/

S. = B S B' + S .

-- xy -- -- XI -- -- ee

or

(29)

It is also Oossible to specify theli'arametric structure of the mean

vectoi within jUreskog's (1970) Analysis of COVariance Sructure model

(ACOVS). Let D be an N x 4 Matrix of scores on tests xl, x2, y3,

and y, from dsample of size N, E an N x'l matrix of ones, and G a 4 x

4 matrix specifying constraints on the mean vector. Then the population

.,means are structured as,

6

When.G is the identity matrix, ,(D) = m'.
0

w

in Figure 1. Since the true scores are standardized, the coeificient g.

If x and y are cov:ieric, then r 'will equal 1.0. That is,
.XY

g2/gl. g r
1.0. Thus, testing the hypOthesis that two

(30)

tests x and y measure the same attributeexcept for differences in means,

units of measurement, 'and errors of measurement (or that x and y are

sclentifically equivalent or that they have a LFR) reduces to testing the

hypothesis that r = 1.0. Under cogeneric assumptions the parameters

b '1)-1) b.mmmm s
el

,
e3 e4

1" 2' 3' 4' 1, 2' 3' 4
s
e2

, s , s are free to assume any

real finite values. A path diagram for the cogeneric model is presented

'unmt equal.1.0 when x and Y are cogeneric.

Insert Figure 1 about here
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Before concluding this section a final point should be Made
!

cOncernIng the rank of the matrix S xy
. If x 1 ,

x 2 ,
y 3 ,

y4 are

all congeneric, then Equation 25 can be rewritten as

X
J.

x2

MI

-b

b
2

m4
3

b
3

and Equation 29 as -

b
4

"bt.

-

61
e
2

e
3

e
4

(31)

S b b' + S
'

(32)

xy ee

which is formally equivalent to a factor analytic model with one common

. -

factor. When rxy is:unity, the rank of,S and S equals ohe.

, Testing the restriction that rxy 7 10 is equivalent'io'test ng whether

a single factor model fits the data (Gulliksen, 1968; JUresk g, 1974).

The.path diagram for the one factor model is depicted in ",:414iire 2.

Insert Figure 2 about here

DATA ORGANIZATION AND NOTATION'

In order to facilitate our complarison of the several statistical

procedures for determining LFR and the equivalence of me sures, a common's

data layout and notation will be employed for all the p ocedures. First,

we assume that there are measurements on two testsxadywhich, hae

been split into cogeneric halveal xl and x2j1d y3 nd y4 as

0
was Aescribed above. Thus, the cogeneric measurement

model specified in

EquAtions through 21 holds% The scores for N pe sons_on the four.,

tests are
organized)according to the schema ii-esen ed.in Table 2, which

alao illusprates the notational conventions that ave been adopted.

6

' 1
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Insert Table 2 about here

The population covariance watrix of the vectors(x 31, x 2, x v $ Y y)

may be expressed in lower:triangular form as

S

(x
1,

x
2'

x y v v)
3' '4'

11

s s
21 22

(iymmett1C)

.410

sxl sx2, sxx

831' s32 83x 4,83S

6
41 s42 84x 843 x44

syl
stic2 syx sy3 sy4 sivy

,
(33)

The estimator (34 S derlored from a sample 1:)1( size N will be,denoted 5, the

elements,of which are deviation sums of squares and cross products

divided by N1-1 and symbolized (firs. The estimator of the population

vcorrelation matrix ii derived from 5 and may be written

r
21'

r
xl

1.0

r
x2

( symmet r ic)

1.0

as
(34)

(X1' x2'7x Y3''Y4' Y) r31
r
32

r
3x

1.0"

1

r
41

r
42

r
4x

r 1.0
43

ryl
r
y2

r r
y3. ,ry4

1.0

We will refer to the entries in S (xl, x2, x, y3, y4, y) and R-

(xl, x, y3, y4, y) frequently in the sections to follow. The

definitions of the other vectors and matrices remain as given in the

preceding sections, e.g., m, B, S, etc.

,

4
V. 7,12
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REVIEW OF'METHODS FOR DETERMINING EQUIVALENCE '

The purpose of this section is to explicate and compi7 seven

'statistical methods designed for.determining if the true scores from two,

or more tests are perfectly linearly related. They are divided into
,

three sets depending upon the type of inforiation or data required: The

first group contaihs the three bast methods of those which require

replicate measures of each scali: Jöreskog (1971), Kristof '(1973), and

Lord (1973). Gulliken (1968) and Dunivant (1979) have reviewed other '
-

less okimal procedures in this group.

In the sectInd set-are three methods which assume information is
..0

available about the covariance structure Of the errors of measurement.

N

While such information can-be obtaina from
replicated data, it may come

from any otherindspendent sources. These methdds, which were f5mulated

primarily -1],y statisticians concerned with estimating and testing linear

funclional gelations, include the methods of Koopmans (1937) and Tinter

(1945, 1946),. Fuller (1980), and Jbreskog (1971).

The third tat of methods includes only Fufler and Hidiroglou's (1978)

method for testing matrix singularity when independent information about

the reliabilities of the variables is available. The procedure uses the

reliabilkties to adjust the coviriance matrix of observed score" in much

the same way that the'estimates of measurement error variances are

utilized by the procedures in ihe second group. Indeed, all seven'

procedures are very similar in logic, if not in mathematical detail:

each uses information about the-covariance structure of the observed

measures and errors of measurement (from replicate measurements, error

.variance estimates, or reliability estimates) to estimate the parameters

- of the linear functional relation.,

IV 13 OP



To the extent possible the same outline has been folloumd in

describing each of the methods. At the outset the statistical Model and

its assumptions are stated. Then the nulf and alternaeive hipotheses

which are tested by,the procedure are specified. Next we provide the

s'omputational formulas for the test statistic and describe how its

significance is evaluated. If provided by the test developer, the)

estimator of r under actrue alternative
hypothesis is presented.

XY
%

Finally, an evaluation of the test is mad". For example, evidence which
4

contradicts.the validity oi the test is-discussed. If the efficiency of

a test relative to one or more other tests is known, the superiority of

the method is pointed out. Relevant Monte Carlo results, if available,

are summarized.. We also demonsrate that some tegts diffet only in

computational methods, e.g., in the,way the likelihood functIon is

evaluated. They are identical
statistical testd in all gther respects.

We begin our coneideration with'the methods of the, first see which

require replicide measurements.
0

Procedures Uding Replications

Lord-Villegas Test

In 1973 Lord demonserated to psychologists how a statistical
I

procedure developed by Villegae (1964) to estimate linear functional

relatiOns codld be msed to test "the hypothesis_that two sets of

.0

measurements differ onlybecapse *of errort of measurement add bectuse.of

differin% origins and unitS of measurement" (Lord, 1973, p. 71). The

assumptions of the Lord-Villeges procedure are summarized in Table 3, ,

- 14 1.110
LP4

9

;

s%
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Insert Table 3 about hereb

which,is taken from Dunivant's (1979) review. The reader will note thit

in addition to the classical assumpti.ons about tre and error components,

. .

the`model requires the errors of measureMe4Orom any pair of tests to

.4 Q
follow a billariatft normal distributiofi. However, the errors of

,

.-
e

measurement for tests x 1 and x
2
may be correlated with'those from

4nd y4.. Although it is not statied by Lord, Xristof.(1973) points

oUt that the Lord-Villegas test
requires that xl be parallel with 2,c2

and y3 with y4. InspeOtiOn of Table 3 reveals that the Lord .(1957)

test differs in.assumptions from the Lord-Villegas method pximarily in

terms of which components are required io be jointly normallydistributed

and the correlation of errors.. Also the Lor4ITVillegas test does not

depend on sample size for its justification.
*

The null hypothesis tipsted by
the'Lcrd-VillegaS,procedure is precisely

that the two tests xrand,y are congeneric or scientifically equivelent,

$

i.e., Ho: r 1.0. The alternative is that the li4ear relations44

between the true sc'ores..ii less than perfect.

In order to perform the Loid-Villegas iest we must compute"three new

mStriceS. Ler us define the matrix W, a within persons matrix., to be

is

s 2

x'w 2

Yxw Yw
.'

where the elements in,14 are defined as

2'

sv 2: f_ _
o 4.4. vft

YW i=1 j4.42, N

a

)2

103
IV - 15$

(35)

.(36)

4.
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.or

-, -

--:N, 2

N 2
2: 2: (x
ifr!

. -

ij

-Z )2
- ij. Yi.

.Y

-
W 1=1' j=3

The reader will reca11 that all of the airmbols are defined in'Table 2

xi. i(j+2)7
.), and (37)

(38)

-
except x1 and yj which equal 1(xii + x12)72] and.[(yil 4-°y12)/2],

respeCtively.

,Next the among persons sums of squares and cross products matrix A ii

written h't

where

A

11

2

Yx

, N
/ 2

-- 2

s
x

= 2 3: (xi. - x..)

A i-471

' N ,

= 212: (x - x.) (yi. - y...) P

,i.-xyA A i=1

YA

2 22:
Vol

Ci, 7..2i

(39) ,

40))

(40)

(41)

-gow we- select the
aignificance.level at which we wish to evaluate H 0'

say .05. From thctailled values of F we find the 1-05 = 95 percentile of

the F d istribution with N and N degrees of .freedom. Finally, we evaluate

the determinant
2

of matrix C. of/orde 2:

IA .- F95 W .
(42)

The null hypothesis of equivalent measures is rejected at <:". .05

significance level if the determinant is positive and if botb diagnoal

eerms are also positive, i.e., "HO is rejeCted if and only if the



_

matrix C is positive definite
.3 (Lord, 1973, p. 71). Lord (1973)

explaihb that the-test ie; slightly chnserVative in that a true null will

J be rejected somewhat less often than the value ol- would indicate.

'Simulation experiments haVe verified.this (see Dunivant, 1979). ,However,
_

.

thd method,ts almost as powerful as Kristof's '(see below), which has the

greatest power along those procedures which.have been comparacf.

The control of Type I error, poFer ? computational-simplic0y, and

someWhat less restrictive assUmptioas of the Lord-Villegas procedure as

cotpared witb several oeher procedures (of. Table 3) would seem to

commend'it to general lige. .However, Lord.(1973) oaution3 thatthe

procedure may be very senslttve to-correlated errors within tests, i.e.,

when r 0 0 ahd r
e3e4

0 O. ,i'or example, positively chirelated errors

. e
1 2

,
. ',

will tend to increaSethe eleients of W and consequently to decrease th6

probability of rejeCtiqg.H6...-The extent to whiCh this-procedure is

affected by violations of Assumptions concerning measurement error'

correlations, linearity, and normality- is unknown. Since educational and

.

psychological data will eften-fall'to satisfy such assumptions, the'

robUstnes
of-the'Lord-Villegastest,ls an important question.

krist of s Iesf

.

kristof's (1973) method for testinrif a perfect linear relation

exists between the true scores X and Y represents a significant
.

liberalizationsofthe assumptions of the parallelism of xl and x2 and

of y3 and y4 required by most of the procedures based on

-

replications. In fact, Table 3 shows tfiat thia method make8 only three

assumptions: 1).that the errors Of measurement within scale x and within

scale y are uncorrel e , 2) that the errors are not correlated with true



scores, and 3) that the errors are multinormally distributed. Kristof's

%
test appears to 'require fewer restrictive

assumptions than any of the

other methods.

The null hypothesis is "that two variables have perfect disattenuated

f

correlation, hence measure the same trait except for errors of

measurement. This hypothesis is equivalent to saying, within the *adopted

k

moder, that true scores Rf two psychological tests satisfy a perfect

lit:ear relation" (Kristof, 1973, p. 101). This may be written as:

Ho. : + a2Y + ao 0 (for al, a2 0). (43)

The reader should notice hat either \al or a 2 will be less than zero,

i.e., will be negative, der Ho. Equation 43 clIn be tearranged to

clarify the nature of the perfect linear relation:

( a o)_
a

a
2 2

(44)

%

'Obviously, if A (Y) g - 0'and var(Y) var(X)," 1.0, then -a1ia2 rxy .

The alternative hypothesis 'holds that Equation 43,is nonzero.

In order to drive
Kristof's)est statistic we define two new

variables. f
1
and f

2:

alxiy+ a2y3.. a1X1 a2Y3 + a1e1 + a2e3,
(45)

f .taX +aYA-ae 4..ae
(46) -

2 1 2 2 4 1 2 2 4 1 1 2 4

(Refer to Equations 13 through 24 for definitions of the variables.)

Kristof observed that when Ho is true, f 1 and f 2 will correlate

exactly zero. Thus, Ho can be reformulated as Ho: rf 0.

1 2

If t exceeds the critical value of r for a

f f
1 2

flr2

prespecified 0( level, then Ho is rejected.. The test is conservative

according to Kristof (1973) so that "if rejection of Ho occurs then



4

the true corresponding, level c07 will not exceed go: O <& " (p.

108)I-In oyderi,to test H
'

we compute the minimum possible value of
0

,

r given the data subject to the restriction t.hat

f I! 2

al' a 0 01 Letting rmi
n

be the minimum value of rf f ,-tcompute.

1 2

(47)

If the sanple value of t exceeds the tabled value of t for N-2 df, then

Ve reject the hypothesj.s of equiiialence of x and y. A one-tailed test is
,z.

performed because of t e asymmetry of the alternative hypothesis,

,11
'1(ristOf (1973) describes several test6 which are based on different 0,

assumptions concerning the parameters of the error distributions.

However,' we shall develop only the least restricted model. As a iirst

step in computing

A
form S

1.

S
-11

S'
712

I

1

t

we rearrange

S
-22

the 'rows

A

add columns in .2.

A

sll 812 s14

s3 s33 s32 s34

_ SEIM WI/ MM. .1.

821 s23 I 822 924

0'4
841 -43 -42

m
-44

t

Next an eigen decomposition. of .S12 is performed to yield orthogonal

matrices P and'T of order 2:

-12 --
In the next step new matrices Q and U are found as follows:

.5
U S

S
11

P T-45 (qjk) for j 1,2; k 1,2 , and (49)

'If S2 T (ujk) for j 1,2; k 1,2. '(50),



a

Finallyv we so/-4e the quartic trigonomefriC qquation
-

h
4
cot

4 v + h
3
cot

3 v + h cot v_+ h got v + h 0,2
2 1

h4 (111u12 (112u11'

43 (111(u22 ull) ull (5122 4 (112u12,

h2 3 Eq12(u22 ull) u12 (q22 411)1 '

hl q22 (u22 u11)(q22 4 q12u12,

h0 (112u22 q22u12.

There will be four solutions of this equation, two of which must be

rqa1.. From the largest root of the quartic we find rmin which is then

-

used in the formula for t (Equation 47) to evaluate the null hypothesis.

Although Equations 46 through 56 may appear formidable, they are'

where

(51)

(52)

(53)

(54)

(55)

(56)

easily and quickly solved by standard computer programs e.g.; IMSL

(1979). Most computer installations will have a program for salving 4th

degree polynomial equations in a'single varitOle, say d. To solve

Equation 51, let d a. cot v and use the program to obtain the largest real

root, say p, of

h
4

d
4
+ h + b2 d2 + d + ho a 0. (57)

Then the correspond...ag root s' of Equation.51 can 1e obtained by usink

the inverse trignometric fundtion to solve: p' arccot p. It appears

that Kristof's (1973) method represents an efficient procedure for

testing if rxy 1.0 under very /iberal assumptions. Although the test

-is conservative, it is valid in small sample applications. It has

performed as well or better-than other procedures in Monte Carlo

studies. Its efficiency is especially pronounced with small sample sizes.

Thus Kristof's (1973) procedure possesses some real advantages over

those methods already reviewed. To summarize, the test Aoes not require

.0
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td1,

the parallelism of xl and x2 and of y3 and y4 and perpits some

betuten-testArror correlations. Large samliles are pot required to

justify the validity of the test. Widely-available kandardoompnter

programs for solving polynomial equations can be used,to compute:the

necessary test statistid quickly and inexpensively. In addition,

Kristof's procedure conveys a tangible benefit to the user,when xl,

and y3, y4 are not parallel. The'degree to which Kristof'S test

is robust has yet to be determined, however.

SUreskoes Test

areskog's.maximum likelihood method for estimating the. paramete'rs of

and testing hypotheses about covariance structures provides a very .

1

flexible.approach for investigating the equivalence of measures. As can

be gleaned from Table 3 the method is based upon the large sample

properties of maximum likelihood estimators and likelihood ratio tests

:-

subject to classical test theorY assumptions and the cniltinormaiity of
-

the obseriarion vector (x1,1c2, y3, y4). Parenthetically, we vo"--

mention that the general ACOVS or'COFAMM models can be defined so as to

relax the classical assumption of,umcorrelated errors. However, more

replicate measures on x and y will be required in order to identify the

model.. It is obvious from Table 3 that JUreskog'smethod compares

favorably with the procedure of Kristof (1473) diseussed in the last

a

section. However, as will be ahown below JUreskog's technique allOWs

greater flexibility, because'it allows one to test a variety of

restrictions-and hypotheses.

Forthe purposes ofthis review we re interested spdtifically in,

:testing twodifferent null whyPotheses ,thin the framework-ef_nreskog's



ACOVS model. The first\ is that rxy = 1.0 which we now write as HE

(for equivalence). The second nuIl is that for each variable the -half

tests meet the assumptions of equality of units of measurement and

',standard errors for parallel tests. Thus Hp symbolizes the null

re'

hypothesis that xi and x2, are parallel and that -y3,..-and fy4 4re

also, parallel. Of course, Joreiskog's method is completely geperal so

that an /interested ivestigator could test, assumptions of the tau

equivalence, or of the parallelism of four observed variables, i.e.,

Wilks (1946) test, etc. Although in this section equality constraints on

the means or origins of the measures will not be considered, the reader

should appreciate thai JUreskog's general .00FAMM model readily permits

tests about the structdring of the means (as was illustrated in a

previous section). There ig typically little interest in differences in

means between tests,, so this issue Will not be pursued here. After

considering the computational formulas, we shall describe -how two

'alternative te ts of HE and H may be formulated and evaluated.

Jareskog's (1970) general methoCI for analyzing covariance strUltures

assuines that the population cen,aria *Stfix S xy
has the form given

, .'y

in Equation (21)' which is reproduced here for the reader's convenience:

S B S + SIty XY ee

A covariance matrix of this Structure is produced when the observed

4")

variables are structured as/ Equation 25 (reproduced here):

(29)

x=m+Bt*e (25)

- Three kinds of parameters may be contained in the parameter matrices B, S

and S
ee

: (1) fixed parameters that are assigned a priori

values, (ii) constrained parameters that are unknbwn, but equal -to one or

4.



more other patametera,'and (iii) free parameters that are unknown and

)f

unionstrained.

The problem is to find-estimates of the constrained and free

P

parameters which maximize the likelihood of the sample values given a

model df the form of Equation 21. For most applications simple analytic

solutions do not exist, so JUreskog (1970) uses the numerical method of

Davidon (1959) and Fletcher and Powell (1963) to.maximize the likelihood

*

function: JUreskog argues that compared with variants of the

Newton-Raphson technique, this is an effictient-procedure which makes use

of the derivatives of the likelihood function and the inverse of the
0

information,matrix. Actually, 3Ureskog (1970) finds it more convenient

fo minimize a function 0,- whicfi is equivalent to maximizing the logarithm

of the'likelihood functiod L:

0 = log Irg 1 + tr (S S
-- xy - xy xy

1

xy6
) - log 1 g 1- J,

--
(58)^ . N ....

.

4,0

where
N
S contains the maximum likelihdod estimates of s estimated,under

jk .

the model specified by Equation 21 and J is the number of observed

variables. 0 is a frincrion df the independent elements-in B, S andS

In large samples, N-1 times t'he minimummalue of 0 is distributed As chi

square and may be'used to test the goodness of fii of themodel. In

-addition appraximate.standard errors may be obtained for each estimated

parameter from the inverse of the information matrix computed at the

minimum of O.

Hypotheses pre tested in this approach by the likelihood ratio

technique. ,The ACOVS
4 or COPAHM programs compute a chi Square value

for each specified-model Against the most general alterdatime, that

.S is any positive definite matrix:



ni 2
X. `-2 ln

L (59)

L (S F)

where L (S R) represents the likelihood, under a given specification of

fixed, free and constrained parameters (Restricted model), and L(S F)

is the likelihood under the assumption that S is any positivexy
definite matrix (Full model). According to JUreskog (1970) it is

possible totest any given model,, ay MR , against a more general
1

.alternative, say:MR , by estimating and testing each one separately
2 Afr

(against the most general alternative that S is 'any p.d. matrix) and
xy

2
comparing their 7L goodneis of fit values. The difference in chi

square values is aysymptotically chi square distributed with degrees of

freedom equal to the corresponding differehce in degrees of freedom

, between the two models:

2 2 N (0 - 0 )
rR2

1
R1 R2

with
df D

df R2
- df R1

(61)

. In general, the number of degrees of freedom on which any chi square tIpt

is based equals'the difference in th&imber of parameters estimated

under the full and restr4ted models.

With this introduction to areskog s method we can now/ explicate the

hypotheses (models) of interest in investigations seeki*to determine

the equivalen of measures, Following Jöreskog (1971) we suggest four

models which could be tested:

M1 : b1 b4, s a $ 2 (,+s
2 a se , rri a°1.02 2

1 2 3 4.

6 Iv - 24
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2 2 2

: b
1

b
2'

b
3
= b

4'
s = ,

e
3

e
4

s s
e

,

1

rre 1.0

M S is any p.d. matrix of rank 2 witli the elements of B, S and

4 ..xy xy'.

S
ee

all free.

Each of these four models is tests.d against the most general model:

M
5

VS iany p.d. matrix.xy
This series of tests is illustrabed in the upper portion of Table 4 where

the numbers of parameters and degrees of freedom are indicsted. To-test

the hypothesis that ttte two tests x and y are equivalent (lig: rIcy = 1.0)

we could consider the goodness of fit of eeher Models 1 or 3. Hp, the

Insert Table 4 about here

null hypothesis that xl, x2 and y3, y4 are parallel could be teste,d by

Model 2. However, ..7Z5reko (1974) maintains that "the value of should

be-interpreted very cautiously." He suggests that it is more informative

to test the reasonableness of any restriction -by fitting two different

models, one of which contains the restriction, the other of which does

not. "The differences between
valueg matter rather than the 7/.2

values themselves" (Tbreskog, 1974),

In the lower portion of Table, 4 are presented four model cbmparisons

which yield tests of HE. and ,The differences,in chi square values,

for the indicated models yeild teats of the folAawing null hypotheses:

Mi v. M2: Given x10. x2 and y3, y, are parallel, test if x and y are

congeneric.



.M
3
v. M

4.
Given x xs2 and y

3'
y
4

are congeneridi test if x and y are

'congeneric.

m3 4. m Given x and y are congeneLc, test if xi, x2 and y3, y4 are
1: ,001/4.

efOrallel.

M4 v. M2: Given x and y are not congeneric, test if xi, x2 and y3, y4 are

(Of course other possibilities exist, e.g. tau equivalence, and thee can

be tested easily by the ACOVS or COpMM programs.)

We observe that the test df the Mi v. M2 comparisonjs identical

tp Lord's (1957) test. They differ only IA computing algorithms. The

comparison of models 3 and is comparable to Kristof's (1973) Case
/

iii.

which was presented in t(prior section. Although the underlying

assumptions and nul/ and alternative hypotheses Ste'(roughly) the same,

Kriatof's 4pd 6JUreskog's test stStistids differ considerably. In

simulation experiments in which they have been compared, Kristof's method
1

has been generally more efficient in small samples. When 14 exceeds'200,

'however, Joreskog's procedure demonstrates greatsr power. 'The

availability and ease of use of Joreskog's COFAMM program are certainly

advantages of this technique. However, setious questions about the

method's sensitivity to departures from normality remain. Recently' ,

problems have been found with the Davidon-Fletcher-Powell algorithm whidh

COFAMM uses (LSe\S, Jennrich, 1979). Thus, it seems premature.at this

point to recommend ACOVS/COFAKMas the optimal large-scale procedure.

Befote closing this discussion, it is worth noting that Jöreskog's

method affords,the capability of testing which test model is appropriate

IV - 26



for xi and xiand for y3 and y4. Identical:tests of parillelism

ea4 be consvructe using the methods of Vilks (1946),. Votaw (1948), and

Jöreskog (1970, 1971). Thesa all produce likelihdod ratio tests, but

they differ in\cemputational methods. Theease and flexibility of

\

Jdreskog's proddure would seem to recommend it for testing assumptions

score models, e.g., whether a sat of measurements confCrms toabout test

the assumptiona of congeneric, essentially tau equivalent, or parallel

tests.

:In concludingthis description of the ACOVS method We point Ont that

.

itwillyiel(LabfLestimateof-r4_1Mien.HE is'nbt tenable and that it-

.

easily accommodate's the analysis of several sets pf congenerid tests

a) each of which has several replications

x3y4,y5, 671 z8), The null hypOthesis of interest in

this situation:is H
0

: r -a r a r a 1.0, Finally, it is
XY XZ YZ 4

interesting to note that ACOVS or COFAMM can be used to test,the

(e.g, xl, x2,

/.

hypothesis that the correlation for attenuation equals 1.0 in situations

where .replicate measurements on x and y are not available* if-the
c

reliabilities or standard errors of x and y are known (gf.^tquatiOn 3).

This will be considered in the next 'section.

Procedures Using rror Variances

Xoopmans-Tintner Method

The credit for developing the first statistical procedure for testing ));

the hypothesis that true kores have a perfect linear relation by utlX.ng

information about the cp4ariance structure'd the\errors of measurement

must be'shared by many statisticians. I attribute the method primarily

to Koopmans (1937) and Tintner (1945, 1946, 1950) becauSeof their



concern for signIficance teSting and research application". Building,
-

primarily on the work of Rhodes (1927) and van Uven (1930)', Koopmans

(437) proved the Maximum likelihood properties of van Uven's (1930)

weighted regresOon estimates of the parameters of a linear 'functional

relation and derived approximate sampling distributions for the

coefficienti. This work was extended by Vintner (1945, 1946, 1950), who

used a resUlt of Hsu (1941), to derive an approximate asymptotic test of.

equivalence. He applied this method, which in'the field of econometrics

is now commonly,referred tp as the meehod of weighted regression, to

problem% of multicollinearity and homogeneous ecdnomic funCtions. As

will be seen, t methokshares certain identities with seVeral

,- .

multivariate itechniques,"most n
.

otably factor analysis and canonical

i
'

o

correlation., Although' none of its developers were concerned with the

problem of equivalence of measures as defineost in hischapter, the

weighted regression method permits a test of the hYpothesishat two Or

more scales differ..only in means, its of measurement, and standard

errors pf measurement.,
;

To explicats the,procedure, we first forM di) covariance m%trix of

the total 'scores x and y, S , from the entrids shown in Equation 33: .

xy

"- S fa

xy
,s a s

yy ..yx
- ,

,,The covariance.structure of the measurement errors for the total test

scores given in Equations 1 and 2 is defined as

ee
ee

s
e e

s
e e.
x y

s
e e
y x

s
e e

Y
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,

'which explicitly, permits correlated errors. For ease of presentation, the
3.,

method is illtlqtrate d for the case where,there are only two (total)
,.

scales. The matrix ftrmulaeicin 1.6 completely general, however, and holds

'for any number of te sts: Alis uming ihat an estimate of S is available-
-txy

and that S
ee

is known, Eqtation 7 may be estimated by solving the
-

two-matrix eigenproblem (4,.. Bock, 1975):-
IA'

(64)

A A ,A
The elements of the eigenvector (gl, g2) corresponding to the

A

A

smallest root
1

.0 are LS/ML estimators of

g c '+ g .X
, 2

, -

'The intercept is cqmputed by inserting mean values for X,and Y in

Equation 7 and solving for C:

C M g1 Y + q2 X

A
Under the null hypothesis (of equivalence) the quantity (N-1)u1 is

(65)

approximately distributed as chi square with N-2 degrees of freedom.

Anderson (1948) p/ioved that the quantity; (UI .T,4b1)/2N followed the unit

normal distribution for large N. ApproXimations using the F distribution

have been proposed by various authors as well. When the values of either

of these test statistics exceeds Ole eabled values for the presie6ified

alpha level,and appropriate degrees of freed6m, the hypothesis that Y and

X are equivalent is rejected. . .
The weighted regression Mithod assumes that the pOpulation value of S

ee
is 'used in ehe preceding calculations. .Koopmans and Tininer both

argue.that using an estimate of
ee

S will not greatly affect the
--

,validity or accurs:cy of the structural, coefficient estimates as long as

the variances of the true scores are much greater than the error



dispersiOns, i.e., that the measures have high reliabilities. Malinvaud

(1970) concurs, but cautidns that this and other deductions apply Only to

the asymptotic distribution of the weighted regression. And, as he

.points out, "[u]nfortunately there seems to exist ne.study of the

-

.properties of this regression for finite.samples-"-(p. 394) it is not

known'how efficJent anerohusi this method is relative' to those of

Kristof, Lord, 'Joredkog Or others. The fl'exibiiity, generality,, and ease

of.calculation make this technique potentially attractive. However, much-

p3ie needs 'to be known about its small sample behavior in comparison to

the other methods.

Fuller's Test

In a significant contribution to the' weighted regression method,

0
Fuller (1980; Waeren,yhite & Fuller, 1974) derived.a significance test

for the smallest root Of the determinantal equation (64) that is valid\

for.small saMples anclmodified the equation to improve the efficiency of

the estimators of the functional relation coefficients. The methods

devised by Fuller may_be ugted with any number of variables; but, again

for illustrative purpbses we shall consider only two scales,ix and ,y, as

-itkthe precedini section. Fuller assumes that the vector Containing the

errors 81. Measurement are independently and identically distributed as a

, 'multivariate normal random variable with mean zero and covariance matrix
, . .

A ,..,

S ihe matrix S is positive definite and a consistent
--ee - sY A
desiimator of S . Fina4y, an unbiased estimator, S , of 4

xy ee .

multiple of S
ee

is available. Fuller (1980) presents formulas for the

Case where S
-ee

is known to be diagonal (the measurement errors are,
-

uncorrelated) and for the general case when S ee
is a positivl

,



4

semidefinite matrix. As described .in. Warren, White, and Fuller (1974)

tile null hypothesis given by Eq,patiOn (8), that the variance of.the

stochastic error in the equation equals zero, can be tested for the

4

special case of uncorrelated errors as,follows:

Under the stated conditions and the null hypothesis that s
f

2
' 0,

the distrilution.of the small st root of

ul IL ee Im
P

can be apprigimated by Snedegor's F

. (N.-
12)

N
u
1

rsi F
A

with N-2 and d degrees of freedom where

i 25 2

. 2 ex.

(66)

(67)

(68) I

When the obtained 1 eds the critical Value of F for N-2 and d degrees

of freedom, the hypothesis of equivalence oroperfect Iinear relation is

rjected.

The consistency and small sample properties of Fuller's estimators

also hold for'those of Koopmans and Tintner under the same assumptions.

Fuller's test statistic should be better behaved than Tintner's

.approximations. Howeer, the performance of these tests when the

-.
assumptions of normality and linearity are violated is unknown. The

power of the weighted regressionmethods relative to that of Kristof's

and ibreskOgS tests has not been determined either.

.Nreskog's,Model.

The general form of areskog'S method has been discussed extensively

- .

in prededing sections. Thus,.,it will be considered onl3i briefly.here.
1

In J8reskoes (1973)' LISRELInear Structural Rtlations) formulation it



Possible to test the hypothesis that sf
2

0 in terms of the

difference between twe model chi squares. The,path :model is illustrated

in Figure 3. This test has aii of the characteristics dedcribe4 for the

ACOVS test above and likewise depends upon assumptions of multivariate

Insert Figure 3 about here

normality and large sample size (JUreskog & SUrbom, 1978). This LISREL

test wauld'be expected to perform Very similarly to the ACOVS/COFAMM

-test. This is the final method which is based on infoimation about the

measurement error covariance structure to he considered. Now the only

method to be consIdered which uses independent information' about the

NreliabilitieSof x and y will be reviewed.

4

yrocedures Using Reliabilities

Fuller-Hidiroglou Test

Fuller and Hidiroglou (1978) developed a model which uses fnformation

about the reliabilities of x and y to estimate the measurement error

variances. Once the error varice estimates are obtained, the

hypothesis testing procedure c osely parallels Fulaer!s "(1980) method

that was)presented in an earl er section. However,- more stingent

assumptions are-reqyired-inithe present case. .In addition to assumptions
...---

about the normality.of thl''error distributions? Fuller and Hidrogl\ou

(1928) assume that the true scores, X and Y, are normal independent

random variables with/Mean zero. Although this assumption will not be

tenable in some ednadational applications, it is not.an unreasonable

1

assumption for much of the research on educational change.



First, we define k and k ," as the ratio of error variance to
YY xX

total Variance

k
YY

k
xx

2
S
e e
y y, and

S.
2,

YY

2
S
e e
x x

sz
XX

4

Then, the ,reliabilities of the observed vdriabIts may be written as

r = 1.0 - k and
YY YY'

(69)

(70)

(71)

'rxx = 1.0 - k (72)

Given 1-1dependent estimates of the reliabilities, Equationi,71 and 72 can

be used to estimate*k and k . Define K as a matriX of,order two
YY xx

with k and k on the diagonal. Let D be a diagonal matrix with
YY xx ,

the standard deviations of x and y on the princiPaldiaional. The

smallest root of the determinantal equation

S -
--xy 1 ------

A

may be used to test the'hYpothesis of equivlence. If u Is not
1

significantly tifferent from one, the hypothesis of equivalenc is

accepted. Since the limiting distribution of U is the unit normal,

(75)

the qtantii.y01.-1 N*5 (UI - 1) may be compared with the tabular

values of the unit normal diatribution to test the hypothesis (Fuller &

Hidiroglou, 1978, p. 104).

This concludes the .review of pethods for determining whether a linear

functional relation exists or that measures dre equivalent. 'It is.easy



-to see how they.could:be used to good advantage in many studies of

educational change. The optimal method will be a function of the kinds

of data availablvind the properties of the tests and estimates. The

resglts obtained in this chapter.ought to assist researchers ln Choosing

the beat-statistical UR method for their needs.

.

0

A
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FOOTNOTES

1In this chapter a prime indicates vector and matrix transposition.

hhe determinant of a ix2 matrix is equal to the product of the
diagnoal.elemeits minus the product of the offdiagnoal elements.

s 441 this quoultion and all otherivited, gymbols have been changed'
to conform to the notational conventions used in this paper.

4Tbe most iecent version of Jöreskog's prog'ram for the analysis of
covariance structures COnfirmatory Factor Analysis with Model Modification
(COFAMM) is marketed through InternationalEducational /Gitourc-e-s, Inc.,

.Box A13650, Chicago, Illinois 60690.



z

Test Score
Model

Strictly
Equivalent

Farallel '

T- equivalent

Essentially,

1= equivalent

Congeneric

1
Table '1

of
Comparison of Test Score Modelsa

Propensity Distributions Experimental Linear

First Two-Moments Higher Momentd Independence Experimental

Equal

Equal

Unequal

Unequal

Unequal

A

Eqnal

Unequal .

-Unequal

. Unequal

Unequal

a
See Lord and Novick (1968) Ch. 2) for more

b
True scores diay,differ only by an additive

rue scores may differ only by an additive

123

6.

Independence

Yes Yes'

No

No

Yes

- Yes

' No Yes

No Yes

information

ciant

\

constant and a scaling factor

v

-
True,. Error Observed Intercor-
8cores Variancep Means relations Validities

Equal / Equal Equal Equal Equal

Equal Equal - Equal Equal Equal

Equal- Unequal Equal Unequal Unequal

Unequalb Unequal

Unequal

Unequal Unequal Unequal,

Unequal Unequal Unequal

15,



Individual

1

2

(

Mean

4

Table 2

Score Schemaa

Tett

,x

Replication
(1) (2) Sum

x11
x12 xl.

x21 x22 x2.

Xj2 ty Xi

Xxi xN2

712

4.,

,

a
Adapted from McNemar (1958, p. 259).

Replication

(3) (4) Sum

Y13 ,y14 yl-

Y23 Y24 Y2-

Yi3 Yi4 Yi

Y/C , YN4 YN.

753 Y. r,
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Table 3

CoMpari,son of AtzumptionW and Hypotheses of Eight Mathoda for Determining Equivalence-

. A $4
! 0

ASSUMpti0I)
M )144

4

Large sample test a

xi and x2 same origins

xi an4 .x2 same units of measurement

and x2 same std error of measurement

y3 and y4 same origins

y3 nd y4 same,unit's of measurementi

y3 and y4 same std error of measurement

xi, x2, y4 same origins

xi, x2, y3 and y4 same units of measurement

xl x2, y3 and y4 same std error of measurement

x and y same reliabilities

rx = 1.0

gr(e1e2) = 0, A(e3e4) = 0

(eiX) A(ejY) =

g(e1e3) =4(ele4) = A(e2e3) = g(e2e4) = 0

A (e1).- 4(e2) ge3) X(e4)

xi, x2, y3 and y4 multivariate normal

el, e21 e3 and e4 normally distributed

e1e3, e1e4, e2e3 and'e2e4 bivariate normal

e1e3'and e1e4 same joint distribucion

a2e3 and e2e4'same joint distributionV

Easily generalized to three or M104,tiests (X,
2,...)

andty bivariate normal Fiistribution,

ys,

Tesia

":" 'NNYI N

$/11 Y y Y. Y Y N N/H

/ H Y Y Y °N. N/H

,HYYYYYNN/W
H . Y Y Y Y N Nia

HYYYYYN, N/H

HYYYYYNN/k
HYYNNNNN/H
HYYNNNNN/H
HYNNN N N N/H

HYNNN N N/H

H H H H H

YYYYYYYY/H
YYYYYYYY/H
.YYYY,YNNY/H`LYYYYyN
YYNNYNNYNYYNNYYN
NNNNNY.YN
N ; N. NNNYNN
N N N N N Y N N

Y Y N N Y

N N ' N Y Y N N N

a
The lettara_make the 1011Owing deglignations:'Y - Yes, the assumption s required;

11' ' tio; the sasuMption is mkt requfradi H.-Ilypothesis, the assumption is tested as

'tile 'Mal, hy0401401s, IV 43



Tabye

pests of Equivatbnce Using ACOVS

I

,Number of

Restricted Mbdel Parameters Fall MOdel

Number,of
Parameters

2
dfforX

,D

M1

M2.

M.3

.144,

tL
-.. 3

1

M3

1,14

4

) 5

8

, 9

10

4

8 ,

2

1

M5

M5

115

M5

--Nbt tested--

2

10

10

to

5

9

6

6

5
.114

2

- 1

1

1

4

4

a.
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Figure 1

Path Model with TWo Sets of Congeneric Tests
a

a
Adapted from areskog (1974), Figure 3.

Figure 2

Path Model with Four Congeneric Tests

e

aAdapted from areskog (1974), Figure 1.

Figure 3

a'

Path Model for Correlation Corrected for Attenuation
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CHAPTER V

SOME.ANALYTIC RESULTSTOR'PARAMETERS AFFEQTING BIAS IN

GOODNESS OFIFIT AND SAMPLING DISTRIBUTION STATISTICS

INTRODUCTION

The developments in the preceeding chapters suggest that the

parameters of.the observed-sore distributions are functions of the

imrameters of the latent-variable.distributions. lids is indeed the

case. We can Write pxpressions for b', R2' , and s
e

, in terms of

b and the populatron variances and coVariances of the latent (true, and

elror) variables. In oddition, for'a fixed preselected sample size.(N)

the expecte6 values of S and S tob, , the covariance matrices of b

.and b', can be d ived in terms .of the.structura/ parameters. We present

these results in this chapter and compare R2' with R2, sea with se2, and

S
b'b'

with S
bb The comparisons enable us to draw conclusionel

concerning the parameters affecting bias in the observed-score

statistics. We describe the kind; of data and,conditions which are

likely to lead to incorrect inferences concerning the determinants of

true change from.observed-score regressions.

These results mean that if an investigator had hypotheses or

knowledge about the structural parameters, then he or she could determine

the corresponding parameter valuet for the observed-score population. By

comparing:these two sets of parameters the researcher could ascertain the

degree to which inferences about true change based on analyses of (even

Very large) sample& of observed scores could be expected to be

incorrect. HoWever, most investigaiors are not able to state a priori

the population parameter values of the true and error diatribution
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because of a lack of previous reiearoh or because the mathematical

forTalization of.the verbal theory can noi be akceplished precisely.

Even, hough'the =exact values of the latent variable parameters are not

availa le in most circumstances, a range of likely br theoretically
'

possible values usually can be prespecified. .Tor these cases, sets of
\

possible latent strUcture parameter values could Ile used to generate seti

Of pOseible obsetVed-score outcomes. These cbuld be evaluatedand the

potential for grrord of xnferences due to errors of measurementt

adsessed. In the next chapter we use the results of this thaker to

devise an algorithm which takes as input the parameter values f the

structural relations among the latent variates as sPecified,bythe

researoher and outputs the expected'values of.the observed-score
,

regression parameters for a given sample size.

EXPRESSIONS En THE TRUE-SCORE-PARAMETERS

Before ihe expressions for the observed-score parameters can he

written in termaof the latent-4iTh.ble parameters,'it is necessarY-to

derive the covariance structure of the latent variables. Pirse,, recall

theaingle-equation structural model specifying-the true postteat (Y) as

a function of the structural regression coefficients (Iv; b), the vector

of true causal variables (X), and-the stochastic error component (e) Cl

given in Chapter II as .

Y + 'btX + e
(1)

(where the superscpipt t represents vector or matrix transpositiOn). The

eqUaiiohss.,0 the simplified measurement model arealso reproduced for the

reader's convenience:



X:* X + u

y Y + v

Now the covariance.strunture of the latent variables can be giyen.

For the true scores we have the covariance matrix of

S XX

the X

and the covariances of the true X with the true Y

SYXI

auz

ot

(2)

(3)

(4)

The vector of structural regression coeffic nts can also be written

4

as a linear function of the true variance and covarianes as demonstrated

in Chapter II?

(6)

and then the intercept coefficient is-

bo <7)

where the bars designate means or expected values. Since Y la g weighted

linear function of X and e,,the variance of Y can be expressed as a

wel.ghted linear Vombination of.the variances and covariances of the X

and 4 where we make explicit the usual assumption that 13(Xe) ma 0:

C:=P1

2 e2 bts b se2

137
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(8)



Equations 4 through 8 may be summarized in the form of the

part4tioned covariance matrix for Y, X as follows:

YX

1

2
b S bt + - 1 btxx S

2
se for True Change

al

(9)

The first index of the.magnitude of the systematic relation between Y

and X, the square of 'the standard error of estimate (se2), can be

expressed in terms of the structural reeression coefficients and the true
r

variances and covariances. If we let represent the systematic or

predictable part of Y, then

bo + 'btX )(10)

Note that the structural equation model adopted 4n this paper (Equation

1) specified that Y in the population. Thus, e, defihed as

e' Y (b + btX) Y - Y (11)

can be taken as a stochastic component .representing the fact that the

response process or response'generating mechanism is probabilistic in

nature. ,Alternatively e can be *concetved as a lack of complete model

specification as follows. We take e to be .a linear combination of

addttioiial predictors CA Y

e + + XP

where reg ession weights are ignored and iMpose the restriction that

3

E(X
i
X
j

) 6 for 1 is 1 . . k, j k + 1 p. Then e will

lq

'138

(12)
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function as a random variable in the structural model. The variance of e

(the square of the standard'error of estimate) is

s ..
.

se2 as E(ee) ... E[IY - (be + btX) t fy - (b0 + btx)3 ] (13) ,

Oaluating the right-hand member leads to an expression in which s
e

2

is given as-a variance df.a difference in terms- of its.cómponents:

8e2 $i2 4btS XX b 2bt s yx

R2 for.True Change

(14)

The second index of the deiee of systematic relation between Y and X

is thecoefficient of multiple determination-or squared multiple

correlation. It is defined as the ratio of explained variance to Cotal

variance:

1` 2
BY

Ebb for True Change

For a fixed sample size the sampling variability of the, regression

coefficients can be derived for the general case:

*

S b b se2

(15)

(16)

The right member in this equation<contains information about the variance

structure of Y and X. Having deriveda set of equations which involve

parameters that apply to true-score regression, we can now focus upon the

errors of measurement.

The variance structure of the predictor measurement errors will be

denoted as



2
uk

m

The variance of the dependent variable e ror.of meisurement is s
2

and,thecovarianceveitor Of v, U is

0 t M (vu ,

-vog svuk)
/

The results are amalgamated into a partitioned matrix, S vu:
wIr

By
I
2

suiv (symmeiric)

V
SUk

EXPRESSIONS FOR THE OBSERVED-SCORE PARAMETERS

(17)

(18)

(17)

In deriVing.the covariance structure of the -observed variables it is

necessary to impose.certain restrictions usually associated with

classical test theory (Lord & Nevick, 19.68), viz., thaethe errors of

measurement are uncorrelated with' the true scores, that the expected

values of the measurement errors are identically zero, and (as a

_consequence of tbe.preceding) that the expected values of the observed

variablee equal the expected val s of the corresponding true,scores.

Symbolically we write

1

E(u Y) v) 0, E(X ut ) p 0, and E(Yv) 0 (20)



E(u) a 0 and E(v) a 0, and

E(x) a E(X) and E(y).a E(Y)

The reader should note that the errors Of "measurement

-(22)

are permitted

to be correlated, e.g.) v). 0.0, since.iM many analyses of change,it

.

.is quite réationable.to expect pretest'and posttest emirs to be

correlated. Now we present the partitioned covariance matrix of the

observed y and x.values:

ON/ OM. OM

- .. ,
,

Since the true mores and errors of measurement are uncorrelated S
...yx

is the sum of S anci\$ , and using previous results the .

,

yx vu

covariance structure o the observed-scores can be written strictly in

(23)

terms of.the structural,

101

yx

pa eters:

2
s

2
+ s + s

YX vu

+ s + S
YX vu XX --uu

beS b + sv2 + se2 btS XX s vut (24)

S xx b + fit vu S S uu

The veccor of observedscore regression coefficients"defined

(25)



can be expressed in terms of the structural parameters:

b' (S xx + S uurl (s yx + vu)

(S 4S s xx b + (S + S uu)l 8 VUIN uuri

If we let

then

b

'(26)'

(28)

Thus, the vector of observed-score regression coefficients is seen to be a

weighted linear combination of the true-score regression vector and the

true, and-error covariances. The observed intercept then becomes

b'o bo + (b - b') (29)

s ,

2 for Observed Change
e

The goodness of f t indices of the observed-score regression can also be -

written in terms of the structural parameters. The first index of fit, the

,.8-rariance _of -the obseryed residUa-1, can he derived at

so 2
Ns E[ bttxii t 0 + b'x)f

E[ (Y - (WO+ b't (X + u))3 1.(Y + v) - (bto + b't(X + u))1 j
_

8y2 + sv2 + hitS xx by-+ b't S uu' b''-.2b't (s YX vu)
,-,-

+ s . (30)

Equal an 28 can _be employed to express s
2

as a function of the
-

parameters of the lateht variable-ddistributions:
-

2 .4E12 sv2_+ (L b + S xx(L b + m) + L b + m)t uu a b + m)

- 2 ( (b m)t (s _YX svu). (31)



1(2' for Observed Change

Second, the-coefficient of multiple determination is given hyf'

R2 olt S by /sy2 b't (S xx + S /(5y2 sv2). (32)

Using equation 28 theucoefficient of multiple determination of the

obseived vartables,Miy,be written exclusively in terms of the.latent

variable parameters as

R2 . (btLts L b + btLtS nu L b + mtS xx L b + mt S uu L b

+ btLtS xx + btLt. S uu m mt S m + mt S uu m) / (s y24 s v2) . (33).m

S for Observed Change
.

Information about the joint sampling distribution of the

observed-score regressiOn coefficients is contained in

s se,2 . (S xx + uu)-1

Clearly Equation 31 can be used to write S toto as a function of the

latent'variable parameters:

(34)

S bybis 1/N . sy2 + sv2 (L b + m)t S XX (Lb m) + (L b + m)t uu b m)

-2 [(b + m)t (s YX svu)] (S XX S uu)-1 .

A

PARAMETERS AFFECTING BIAS IN OBSERVED-SCORE REGRESSION STATISTICS

Thus far, expressions for the true-score regression parameters b,

se2' R2, and S bb) and thi observed -scl5re regression parameters (b',

-

R2' and S2 b'b'
) have been derived exclusively in terms of the

(35)

parameters oU the joint distributions of the true scores, X end Y. In

k

the following sections we compare the parametric expressions for pairs of
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corresponding true-scote and observed-score regression statistics: This

prIfess enables us to state some ne4 analytic results demonstrating how

the bias the in observed-score regressionestimators is affected by the

distributions of the true and error components of the observed sdores.

In many cedes, however, simple general statements cannot be made without

Making strongassumptions because Of the mathematical complexities. Even

the general expressions provide insights into the biasing effects of

errórs of measurement and enable investigators to estimate a priori the

degree of bias that is likely to be found in most studies of change.

Parameters Affecting Bias in s
e

,

2

To proceed, Equation 14 for s
e

2
and Equation 31 for s ,2 are

segregated into three corresponding units based on their compaTable

structure. These'are labeled A, B and C for s
e

2
and A', B', and C'

foi s
e

,

2

se2 sel2

A: Sy2 A':

B: btS XX b (L b + m)

C: -2bts,yx C': -2[(L,b + m)t (011 yx + s vu)

(L b + m) + (L b + m)t !uu

where from Equation V

and m (S XX +'S u
-1

s vu

It can be seen immediately bycomparing.A and A' that the

observe&score residual will exceed the true-score residual when s
v
2

is greater than zero. The discrepancy will increase as the magnitude of



a
v
2

ncrea8e8. Since power, or one minus the probability of Type

.2.
error, is an-inverae function of:se it is clear that measurement

'"
error in the criterion reduces the power of obsgrved-score vis a vis

....

true-score regression testa. ,
,
-

As s increases C'' detreases and.B' increases relative te C and,
.

, . .

B (holding all other terms:constant). -The effect of s -on the

_

, 'observed residual depends upon the magnitude of S and S relative
, uu

'.

to a In general, positive covakiances among the criterion and
_IA

predictor measurement errors will redute the bias in 6;e:
2
as am

estimator of s. Negative covariances, however, Will tend to

increase the bias. It seems impossible,to make,a general statement about

the absolute difference between s ,

2
and s aa a funttion of s

- e e

2

vu
:

The aCtuaildegree-of bias will vary with the,sike and pattern of

,

incorrelatión among-the X-and the d. It Fan be concluded, however, that

in general bias-will increase as s decreases. This is probably a

fortunate result for-investigations of change, because error covariinces

among pre- and postfeat measurements will be positive in most

circuistances.

The effeet of S
uu

on s
e

2
is difficult to assess since it

appears in L, 112,- and B'. When S
uu

is diagonal.and s
vu

0, as
s.,. .

2
measurement error variances increase, the larger s

e
, will be

relative to s
2

. The effect of S on the bias in s ,

2
can

e . uu e
,

not be ascertained for the general situation in which the rrors of

measurement may be positiwely or negatively interrelated.
%-

Finally, nvaluation of B and C' reveals that the bias in

will be reduced ts S dominates S in S As Sla approaches
--XX .,uu



S
uu

in value, 0 ,
2

approaches s
e

2

e,
However, the pattern Of

relations,aliong the X and amon&,the u cansnullify this.

2 -

In summary, the bias in s
e

, will i= reate"at a function o? he

variance of the messurementerrors in the egendent and .ind&pend nt,

svariables And the-covariances of the measure ent errors in the- predictor

varlibles. NegativelY correlated oriterion an predictor measuretent
,

errors t nd 'to increase the'bias. In most analy es of educational

change, easurement error will reduce the power bf, statistical tests,

decreas the,precision of parameter estimation, and increase the

probability of inferential errors of the second kind.

V,
Parameters Affecting Bias in R

.ReferencetoEquations15and3Lndicate that the_following

segmentation can be made:

R2

A: 1/( y )

B: btS XX b

A':

is rI''
R2'

3.R.sy2_ .17 sv2 )

B': btLtS xx L b + btL S uu L b

mtS xx,L b + mtS uu L b

+ btLtS xx m + btLtS uu m

+ mtS xx m + mtS

Iuspection of A' indicates that errors of.meAsurement in the

criterion variable negativelyds the estimation of the squared multiple

correlation. As the unreliability of y increases, the bias

(underestimation) of R2' grges. Thus, both goodness of fit parameters

12

4



(s
2
.and R

21
) are negatively biased by errors of measurement i

the criterion.

The effect of $ on biaa in the squared multiple correlation is

similatAo its,effectr'Ontbe regreasiOn residual asdemOnatrated in. the
,

preceeding tection. Negatilie covariancesamong the criterion and

predictor measurement errors will increase the bias in R2'. Positive

covariances will tend to decrease the bias. The actual amount of bias

R
2'

R
2
) is a complex function of S and S as well as s=.v

9 General statementS do not appear possible.

Measurement errors in the predictors affect the bias in R
2'.

in a

complex way. The role of S in L increases bias as long as the

--covariances-are positiVe. On the other hand, the separate terms

involving S in B tend to decrease bias when the error covariances

ard,greater than zero: The total effect of S
uu

on bias will depeAd,

the on the actual values.of S
uu

and S Working through a
,

series of examples indicates that in most analyses of educational change,

the overall effect of predictor measurement errors will be to increase

the bias in the estimate'of the squared multiple correlation. This

assmes that most error covariances are positive and-small in sizelt. The

degree of,bias decreases'as S dominates S In conclusion,uu

observed-score regressio analYses of change on the average will

underestimate the goodness of fit of the odel.in most applications. "On

the average" does not mean 7always" so investigators should-be cautious

in assuming that the squaredjmultipl correlatiomestimate has:been,

attenuated.
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Parameters Affecting Bias in S
b'b'

Reference to Equationi 16 and 34 reveals that the iolloWing

structural comparisonf can be made for S and S b,b,:

Sbb S

A: se2 A': ses2

B: (1/N)S 1 B': (1/N)(S xx + S uu)-1

A and A' indicate that the factors which affect se
,

2
will

irol".r^4. q
b'b'

in the same ways. Thus, the estimates of the standard

errors will be inflated by posttest measurement errors and negative

criterion-predictor measurement error covariances. The effect of S

is difficult to assess for the general base. The elements of S
b'b'

tend,to increase as the variances and covarfances i S increase. It
uu

is the,pattern of elements in $ , howeyer, which determines the
uu

extent of bias S generally.

ate effect of the patterns of interrelations among the true and error

components on bias in S
b'b'

is most apparent in segments B and B'.

//\-.
Por the situation in which Suu is diagonal and small relative to S--XX'

predictor errors of measurement:make the sampling distribution estimates

too large. When S
uu

is nondiagonal containing both positive and

negative covariances which approximate the elements of S it value, a

general result concerning the bias in S cannot be derived. In

conclusion, measurement errors tend to make estimates of ,the regressiOn

coefficients lessprecise than theY would be if perfectly reliable

variables were used. The degree of bias is a joint function of sv
2

'

, s S , and a. Statements that apply across all conditions
.., uv' uu .

,

.
,

and pat-terns of relationshp can not be made, however. 3



CONCLUSION

In this chapter general matrix exprecsions for the truq-score

regression parameters havebeen,given. .The observed-rscore regression
,

parameter's were 'expressed is functionnof the true-scOre regreegion

'parameters and the true and error covariance structures. The parameters

affecting bias in the obseTVed-score regression statistics were evaluated

by comparing the eTessions for-the observed- and trUe-score

coefficients. Specifically, the biasing effects of :a_
2

, s and

S on se,
2
, R

2), and S were explored. Some unequi,vocal

statements could be made, e.g., .bias increasee in all observed-score

estimators as a direct function of sv
2

. By'making strong assumptions

about the error structure, vii. that e equals 0 and S uu is

diagonal, other general statements could beinade, e.g., bias increases as

increases.' However, it was not possible to draw unqualified

\
general conclupions abont the parametric determinants of bias. Much

insight into the biasing effects of measurement error his been gained by

examination of the expressions derived in th0,6 chapter. In the next

chapter these formulas will permit development of an algorithm that can
.

be used.in studies of change to assess the potential bias causea by the

unreliability of measures.

V - 15
149-,



CRAFTER VI

AN'AiGORITHM FOR ASSESSINO SIAS IN PLANNED

,sringis OF CHANGN

4
INTRODUCTION

he puTpose,of thie,Chapteiois to develop a method for investigators

,

to easily assess'the poqiible impact of Measurement erior'onstatistical

analyses-of;change. Using the resulte of -the preceeding chapters,

especially those of Chapter,V, an algcrithm is developed which takes as

input estimetes of the parameter values of the structural relations among

the latent variablea (which-the investigator thinks are close to the true

valUes a priori) and'outOut% the expected lielues of the corresponding

observed-score.regresSion par4meters for a prespecified sample size. The

logic cithe algorithm is explained and illustrated with a simple ex ple

of the effects of external loqus of control orientation on change in

.scienCe achievement.

As part of.this research program, the algorithm was implemented in

1

the form of a FORTRaA computer programt which can be.easily installed in

most softwareAlbraries. 'The program enables researchers to iiput a

series of estimates of the trge-seore parameter values and,obtait

expeCted values of the corresponding Observed-score regressions. In the

final:section of the chepter,- a tbmprehensive application of ihe computer

peogram io presented.

4
Ude of,the Orcgram Will enable investigatote to become'eWare of the

vaya in whiCh measuremint error May bias regression.analyses of chenge.

Making this evilliation :before data coliection is completely analogous to



carrying out a power analysis. The reaults of the assessment may lea

the investigator to modify data collection plans.t. For eKample, the

program mAy reveal'that the reliability of the pretest must be inoreased

Accurate, _inferences. are-to -be- possible: The assessment may indicate
. ,

that bias can not be avoided easily and prompt the filvestigator to gather

the data in such a'way as td make the use of attenuation-correction

methods-Or multiple indica-dr (LISREL) models possible. Also, as with-

.power analysis, the program can be used post hoc to determine the degree

of caution one should have when. interpreting the results.pf'the

,

regression analyses of observed scores. In many'situations, like the one

des4ribed in the example in this chapter, it will be concluded that the

possible bias in the observed-score regression estimators was so great

that any inferences must be regarded as completely suspect.

THE ALGORITHM

The algorithm requires informatioq the, structural paro,dters

and the variance structure of the true ror componenee as ut.

2Specifically, hypothesized or /ikel values of

a
v
2

, aqd b are necessary. When in t chapter, iihry simplifying

assumptions are made, viz.,.that S is iagonal and s 0;

information about the reliabilities of the observed predictor variables

can be used insCead of error variances. Tb- algorithm, however, is

developed in a general form that J111 accomodate any measurement error

variance structure. In the following we let q equal the number of

predictor variables in, the model plus one.

S.
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The algorithm first computes the impdrtant true-score regression

statistics, R
2
, s

e
2
, and

bb
S as follows:
--

h

(1.1S XX b) / 8Y2

s 2 [N/(N-q)] sy2 (1-R2) /

S bb 852 P/(N-11)] A XX.j1
t

gb
s YX S XX b

(2)

(4)

If one fled information about $ iniiteadbf b, Equation 14 could be
---,-

solved first and then Equations 1-3. These equations have been derived

in more complicated forms in the preceedimg chapters. For ease of

application, they are presented in their simplest or moseVeasily

calculable form here. The i7tests associated'with the hypothesis that

the regression coefficient equals zero in the population are determined

next:

tb1 1)1 / 8b1 tb2 b2 / 8b2

where the probability associated with eaCh t is a function of N-q

degrees of freedom.,

-

In the next stage of the algorithm, the variance structU1 of the

(5)

observed x and y scores are derived:

S xx S XX 4" S uu 9 (6)

s s yx + s vu
9 (7)

sy2 sy2 sv2
(8)

Standard regression formulas are then applied to the observed-score

covariance matrix to derive estimates of the observed regression



parameters. Observed-score parameters, corresponding to the true-score

pare4eters given,py Equations 1-3 and .5, are found aslollows:

= (b'tS / sy2

S Wbf

[N/(N-q)I sy2

8e,2 [1/07-0] -1

(9)

(-10)
LI

tbfl = b'l / awl , tb12 mm b'2 5w2 , . (12)

The estimates and significance test results for,the true-score and

observed-score distributions can be compared with ease and the potential

for bias and incorrect inferences Assessed.

AN EXAEPLE

To illustrate the valued use of the algorithm a brief example is

presented. )Consider an lnvestigatton which seeks to test the hypothesis

that external locus of contrOl.orientation exerts a negative effect On

true change in science achievement. The variables are posttest science

4thirement '(Y), pretest science achievement (X1),,and external locus

of control (X2). It is assuine'4 that the correlation between trtie

pretest achieveient and true ext rnal locus of control is .74, and that

the effect of locus of control on t'rue change is -.230. The

reliabilities of ihe science pretest and external locus of control scales

are assumed to be .769 and .951, respectively: Complete input

information includes:

1.00 .74
S XX ' .74 1.00

VI-4
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S uu

VII

/,

sy2 is 1.0 N = 200,,and = 3

.300 .000,

.000 .051

.000

-.230

The true-score regression parameters are found using Equations 1

through 5:

R
2
= .860

s
e

2
= .141

*Sbb

Syx

,

[

.002 -.001
-.001 .002

tb1 = 23.00 , tb2 = -5.15

.53

Mith a Sample of 200 observations the regression coefficients would be

extremely we].l estimated. It is clear that a substantial Portion .of the

-true posttest achievement variance can be explained on the basis of the

true pretest and locus of control (R
2

= .86). The inference that the



effect of external locus of control is negative would be strongly

--gbpported [42 (197) as -5.15, p C.001]. q

Having derived the true-score regressabfficlent-s--for-the---

\hypothesized true-score distribution, Equations 9-12 are used to obtain

othe corresponding bserved-score coefficients. -First, the observed

correlation matrix is calculated

[

1.00 .60] (

.60 1.00

and then the observed predictor-criterion covariance vector:

]37 [.50

The Yegression estimates are then easily computed:

TIL

S hibl
"""

[.63]
.13

.50

.004 "-!.002

-.002 .004



9$96, 2.06

The observed-score regression weight for the pretest is attenuated,

"le

as would be expected from the unreliability of the science pretest. Much

to our hypothetical investigator's chagrin; the obsdrved-score regression

estimate of the effect of external locus Of control is (significantly)

positive': Thus, Inferences aboUt.the effects of external'lOcus of

' control on Change in science achievement would be completely erroneous if
t.

,the fallibility of the measures 'was not tecbgnized. Une of the

algorithm; however,.alerted our hypothetical"researcher to the potential

danger, thus'enabling him or her io take corrective actions prior to data'

collection or to be appropriately cautious in interpreting the results if

the study had already been completed. It is also worth noting that the

algorithm showed that on the average the observed-score model would

evidence less goodness of fit and lower power.

FORTRAN COMPUTER PROGRAM

The algorithm described above was imple9ented as a FORTRAN program as

one part of the overall eearch effort. It is written in standard

FORTRAN and, although it was run on the WATFIV compiler at New York

Universlty, the program can be installed without much effort on any

computer system. Furthermore, the structure allows it to be modified

easily to handle moie general problems, e.g., more than two predictors.

The program is.designed to be optimally useful to investigators who are

planning a study of change (but have not Yei begun data collection).

As the flow charts in,Figures 1 and'2 show, the program follows the

structure of the.algorithm pr6sented above'very closely. A Wource



Figure 1

MAIN PROGRAM

Initialize- S

S s
2,

N
uu' Y

Read low, high values

and number of irteps

for S
3r X ' 11' 22'

b and I 21 2

Determine increments

for 1X1X2' r11' r22'
bi and b2

Sat S

Set r : S11 u u

Set r
22

:

a u2u2,

S t b

Set b

Call REGRES

STOP
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Figure 2

REGRESSUBROUTINE

Compute R. se

t
S--bb" s

yx

,

Compute S
xx

,

Compute b , R
2

s
e'

S--b'b"
s
Yx

t

'

)

Other Subroutines:

'MVMAT: Computes matrix-vector product.

MINV: Computes matrix inverse.

QUADF: Computes quadratic form.
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listing of the .program appears in the appendix to this chapter. Input to

the program consists of information about the variance structure of the

true,AcOma,,=ate-trae-seare-regreasIon-noe c ents, an .t e

reliabilities of the observed predietors. The program allowe calculation

- 'of several sets of parameter values, ehus the input specifies a range oi

values and the number of estimates to be Calculated within that range.

In the version of the program illustrated in this chapter, two

predictors, Xl, and .X , are permitted. Let ni refer to the number

of possible values of-sx that are specified' by the input, n2 to the
2

number of levels of r
11

(s
u u

), n
3

tothe number of levels of r"
221 2

(s ), n to the number of values of b
1 , and n

5
to the number ofu2u2 4.

values of br Then one run of the program produces nl x n2 x n

n
4
x n

5 -c
ombinations of solutions.

This iterative feature was ineluded since researchers will often have

little confidence in their specific,a priori expectations about

true-score regression paradeters. Frequently, however, a range ok

possible parameter values can be stated with some confidence. The

program assesses the potential biases for aIl combinations of suspected

parameter values in a single run. Although the program is formulated in

terms of covariances, it will be used most often with standardized

estimates. Hence, all illustrations below are given in terms of

correlations and standard regression weights.

Once the main programAtas converted the reliabilitiea into error

variances and calculated the increments An parameter valties which cover

the prespecified range from lowest to highest values, a subroutine which

performs the major computation's is called for each combination of

et



, parameter values. On each call,/ the true7score regressfhn pdtameters

R2 8
e
2

9

s
bb 9

tbi, tb2, and s yx are calculated first. Then the
_

,

covariance matrix of the observed'scores, S is determined. Finally,

the values of the observed-score regression parameters, b', R
2s

e

2
,

S bito, tb91, tb12, and s y are obtained and printed. The program

terdinatis after/the final call to the subroutine.

AN APPLICATION

To illustrate the use of the program, it was applied to the following

problem. An investigator was planning a study of change in which it was

anticipated that b2 could range between -.4 and .4, 171 between .1 and

.7, r22 between .7 and,.9, r11 between .6 and .9, and rx between
1 2

-.4 and .4. Within thisJiet of conditions, what degree of bias could be

anticipated in the observed-score regressiou coefficients as estimators

of the true-score regression parameters? The program evaluated 2 x 2 x

x 2 x 3 9. 72 combinations of conditions and printed the results in

Table 1.

Insert Table 1 about here

Comparison of the true-score squared,Multiple correlation (column

R2T) v4ith the observed-score squared bultiple correlation (column R20)

indicates that-little bias should be expected. As.long as the
a

reliabilitiei are high, R2' almost equals R2. When the reliabilities

diop, Rr- undereitimates by .1 tO .2. Consistent with this resUlt

2
is the comparison of e

(VET) and s
e

2 (VE0), which indicates

that se,2 is inflated only, for Combinations of low reliabilities



(r
11

= .6, r
22

= .7). The bias in neither goodness of fit index seems

large enough to Cause the investigator much concern* Observed-score

reitultsconcerning_the adequacy_of__the mode] should 'be _reasonably_ close

to the true-score parameters on the average.

The major statistics of interest in the study of change are b2 and b2,.

The columns headed TB2 and 0B2 (b2 and b'2, respectively) show that there

is some bias. The degree of bias is as great as -.2 [-.2 - (-.4) and .2

-.4] in absolute terms and SO% on a relatiVe basis+.2/-.4 and .2/*4).

For all combinations except'three, the observed-score coefficient falls

within the -.4 to .4 range. In the null case, that is, where b2 = 0,

the observed-score bias is quite small across aIl parameter combinations.

Examination ok the t-ratios for b
2
and b'

2
(columns T-TB2 and T-0B2,

.

respectively) reveals that the true-score and observed-score restIlts are

perfectly consistent. That is, there are no combinations of nonnull

conditions for which t
b

is pignificant but t
b'

is not, and vice
2 2

versa. When the true-score regression weight equals 0, there are no

instances where T-0B2 leads to rejection of the hypothesis that the

1

observed-score regrelision coefficient-equals O.

Although some power -will be lost as a result of .inreliability, our

hypothetical researcher learns from the output of the program that

measurement errAr will not leaohto incorrect inferences about the effect

of X
2
on true cha (3.e., about b2) on the average. Of course, 'this

was the major concern that motivated the preliminary analysis of

. potential bias aue to unreliability. In this situation the investigator
. .

may well decide to proceed with collecting data on xl, x2, and y and,

subsequently performing a regression analysis of the observed scores.



The advisability of course of action depends upon how Closely the

hypothesized parameter values approximate the acrual values in.the

population from which-thd researcher/will draw the sample. In many other

circumstances the opposite course will be decided after examining the

, output of the program,, e.g., in situations like the Science achievement

exaMple presented earlier.

CONCLUSION

In this' chapter we have described the development of a FORTRAN

program- which. is based upon an algorithm that expresses both the

true-score and observed-score regression parameters as functions of the

variance struCtures of the true and error components. Input to ihe

program consists of information about the covariances among the true

predictors, the reliabilites of the observed predictors, and the

true-scoEe regression coefficients. The program outputs values of the

true-score regression parameters and those of the corresponding

obServed-score regression parameters. Comparison of the ,two sets of

parameter values allows one to assess the degree of bias likely to occur

in observed-score regression coefficients as estimators of their

true-score counterparts. Preliminary evaluation of potential errors of

inference due to measurement error allows the investigator to redesign

the research Akan or select new measures. Use of the algorithm and

program is strongly recommended, since it .can improve the quality of

research on the determinants of change and prevent erroneous inferences.
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.

'4DENINISTRATION OF tilE ntLATioNoHIP orniffN rommicTalr OF TRUE-MORE AND ODSERVED-SEORE OISTRIDUTiONS
FOR SELECTED VALUES or RT12,17.11, R22t 101 AND 102

v.

RT12 R11 TD1 001 .01141 9001 T-TD1

Table l

T-001 R22 T02 002

-0.4 0.6' 0.100 08096 08099 08076 16010 18223 087 .70,400 -01261-

.-0t4 016. 08100 .0.062. 08110 01005 08907 08735 087 .08000 '08011

-0.40,6 0.100 08029. 08103 08001 08972 08353 0,7 01400; 08260

."-0.4 0.6. 08.400 0.263 08002 08069 48660 4.073 087 -08400 -08313

...0r4 0.6,

70:4,0.6,,

086

0.400

08400

08700

0.249

08215

08469

08102'

08100

..48039

08000

08060

08051

31940

4,017

178801

38090 0.7 08000

28600 0.7 08400

9:177 087 -08400

-08042

0;220

-08345

' 0.700 0.436 0.079 06070 0.040 68242 087 08000 -08074

0,6 0.700 0.402. 08004 08074 08340 52420 00 0:400 08197

4.-0.4.0.6. 0.100 08073 08099 0.07O . 18010 08937 069 -0.400 -08170

084 086 0.100 0t061 08110 08066 08907 01716.089 08000 -08014

-.0.4 066

0.641.

08100,

08400

08050

08257

08103

08062

08061

08066

06972

.48660

0,619 089 -08400

3,779 089.-06400

0.342

-06411

084H 0.400 08246 08102 08061 31940 36022 089 08000 -08056

0.6 08400 4'08234 -08100 08000 48017 '28916 089 08400 08300

..0.4 086 08700
. -

. 0.441 08039 08048 178601 98100.089 -08400 .-08453

0.430 0r079 08070 08640. 68097 069 08000 -08097

. 0.6 08700 08416 .08084 08074 68340 58642 069 08400 08259

0.9. 0.100 08129 08099 0:071 18010 1841? 087 -08400 -08272

-084 089 0.100 . 00063 0.110 08098 08907 08651 067 08000 .-06005

....0A 0.9 0.100 08038 08103 08094 08972 0,401 067 08400 08263

7084 089 0.400 6.379 08002 08078 46660 48050 067 -08400 -0r206

-0.4 0.9 0.400- 0r334 08102 08091 38940 38649 087 08000 -08019 `

089 0.400 08209 08100 08092 48017 38142 0,7 0,400 08249

-0,4089 06700 08629 0803? 08050 178601 128655 087 168400 -.08300.

-0.4 089 04700' 0.564 08079 08075 68640 78777 087 08000 -08032

163

9102 SON 1-102.

.

1.002 R2T R20 VET VEO N

08099 01001 -48042 38454 082 0.1 0.9 089 100

08110 08086 08000 -0.120 0.6080 180 1,0 100

08103 08084 34009 3,093 0.1 0,1 089' 049 100

08002 06072 -44860 .-44344 0.4 0.3 0.4 0.7 100

06102 08063 0,000. ...08507 0.2 0.1 019 0.9 100

08100 08083 48017 28730 0.2 081 086 089 100

08039 08053 ..408172 -68491 049 0.6 0.1 0.4 100-

0.8079 .08072 0.000 -4802i 0.5 0.3 0.5 017 100'

08064 08077 48466 24557 0.4 Oa 0,6 010 100

08099 08092 '48042 -4.040 0,2 04 0.0 0,0 100

08110 0.101 0.000 .-08136 080 080 180 180 100

08103 0.095 16669 38603 0.1 0.1 049 089 100

08002 08060 -48860 .-58142 084'0.4 086 086 100

0.102 08096 08000 -08562.082-7-081 089 0.9 100

08100 08094 48017 38179 0,2 0.1 0.0 089 100

08039 08057 4-108172 -88013 0r9 087 081 0,3 100

08079. 06083 08000 ...4.173 0.5 0r3 085 087. 100

.08004 08067 48766 2.965:084 .083 086 086 100

08099 08082 418042 ..38110 0.2 082 086 0.9 100

08110 08089 08000 -0r052 080 080 180 160 100

08103 08005 38089 38066 0.1 0.1 089 0f? 100

08002 0:071 -4.060 -.4.041 084 084 086 086 100

08102 08063 08000 .082 0.1 089 0.9 100

08100 08083. 48017 28985 082 081 086 089 100

08039 08045 -108172 1.-..168648 089 087-0.1 0.3 100

08079 08068 08000 .08'477 085 084 085 .086 106
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.40.4 V.9

. *0.4 0.9

*0.4 0.9

*6,4 0.9

*0.4 0,9

.*0.40.9

..-0.4:0,9

0,9

*0.4 C.I9

0.4 0.6

0.4 0.6

'0.4 0,6

0.4 0.6

0.4 0,6

0.4 0.6

0.4 0.6

/004 0.6

r -

(3.4 0.6

0.4 0.6

0.4 0.6

0.4 0.6

0.4 0.6

0.4 0.6

014 0.6

0.4 0.6

0.4 0,6
er,

0.4 0.6

0.4 0.9

0.4 0.0

--"" 0,4 0.9

1:6,) 0.4 0,9

A AAA

:fro 1.40V:.-': 6'*436 "047 4i-400." 0.0134, =01074' 4.1766 '3,187 0.4 0,3 0.6 0q4 100

0.100 0096 '.01.099 0.090 1.010 1.090 0.9 *0.400,-00361 04099 01093 40342 730303 0.2 0.2 0,0..0.0 100

04100' 0483 01110 0079 01907 01033 0.9 $.000 -0.006 0.110 0.102 0.000 --0.060 0.0 0.0 1.0 1.0 10.0

.0.100 01067 0,103 0.094 0.972 0.720 0.9 0.400 0;340 0.103 0.096 3.809 3.613 0.1 0.1 0.9 0.9 100

0.400 0.347 0.002 0.077 4..069: 4.510 0.9 -0,400 4.379 0.002 0.079 -4.860 *4.786 0.4. 0.4 0.6 0.6 100

0.400 0.332 0.102 0.093, 3.940 ,3.572 0.9 08000 -Q.025 0.102 0.096 0.000 -0.258 042 0.14.9 0.9 100

0.400' 0.316 0.100 00092 4,017 3.442 0.9 0.400 0.330 0.100 0.095 4.017 3.409 0.2 0.2 0.8 0.9 1-00

06700 0.596 0.039 0,047 17,001 12.793 0.9 -0,400 -0.397 0.039 .0.048 -10.172 *8.294,0.9 0.8 0.1 Oa 100

0.700 0.580 0.079 0.076 8.040 7.615 0,9 06000 -0.043 0.079 (n070 4,90,0 -0.549 005 0.4 0.5 0.6 100

0.700 0.565 0.004 0,001 0.340 ; 6.971 0,9 0.400 0.111 0.004 0.003 4.766 3.734 0.4 0.3 06/0.7 100

0.100 0f029 0.103 0.001 bo972 9.353 0.7 -0.400 -0i166.---0.103 0.084 -3.889 *3.093 0.1 0.1 0.9 0.9 100

0.100 0.062 0.119 0.005 0.907 0.735 0.7 0.000 0.011 0.110 0.080 0.000 0.120 0.0 0.0 1.0 1.0 100

0.100 0.096 0.099 0.078 1.010 1.223 0.7 0.400 0.201 0.099 0.081 4.042 3.454 0.2 0.1 0.8 0.9 100

0.400 0.215 0.100 0.000 4.017 , 2,600 0.7 -0.400 -9.220 0.100' 0.083 -04.017 *2.738 0.2 0.1 0.8 0.9 100

0.400 0.249 0.102 0.080 3.940 3.000 0.7 0.000 0.042 0.102 0.083 0,000 0.507 0.2 0.1 0.9 0.9 100

0.400 0.203 0:002 0.069 4.8604! 4.073 6.7 0.400 0.313 04082 0.072 4.860 4.344 0.4 0,3 0.6 0.7 100

0.700 0.402 0.084 0.074 0.340 5,420 047 '-0.400 -0.197 0.004 0.077 -4.766 -2.557 0.4 0.2 0.6 0.8 100

0.700 0.436 0,079 0.070. 0.040 6.242 0.7 0.000 0.074 0,079 0.072 0.000 1.021 0.5 0.3 0.5 0.7 100.

0.700 0.169 0,037 0.051 17.001 9.177 0.7 0.400 0.345 0.039 0.053 10.172 6.491 0.9 0.6 0.1 0.4 100

0.100 0.050 0.103 0.001 0.972 0.61? 0.? -0.400 -0.342 0.103 0.095 -3.889 -3.603 0.1 0.10.9 0.9 100

0,400 0.061 0..110 0.006 0.907 0.716 0.9 0.000 0.014 0.110 0.101 0.000 0.130 0,0 0.0 1.0 1.0 100
t

0.100 0.073 04099 0.078 1.010 0.937 019 0.400 0.370 0.099 0.092 4.042 4.040 0.2 0.2 00..0.8 100

.0.400 0.234 0.100 0.000 4.017 2.916 0.9 -0.400 -0,300 0.100 0.094 -4.017 -3.179 0.2 0.1 0.8 0.9 100

0,400 0.246 0.102 0.001 3.940 3.022 0.9 0,000 0.056 0.102 0.096 0.000 0.582 0.2 0.1 0.9 0.9 100

0.400 011257 0.082 0.068 4.060 3.779 0.9 0.400 0,411 0.002 0.080 4,860 5.1.42 0.4 0.4 0.6 0.6 100

0.700 0.410 0.004 0.074 0,340 5.647 0.9 -0.0400 -0.259 0.004 0.007 -4.766 -2.965 0.4 0.3 0.6 0.8 100

0.700 0.430 0.079 0.070 0.040 6,097 0.9 0.000 0.097 0.079 0.083 0.000 1.173 0.5 0.3 0,5 0.7 100

0.700 0.441 0.039 0.04V 17.801, 91100 0.9 0.400 0.453 0.039 0.057 10.172 8.013 0.9 0.7 0.1 0.3 100.

0,100 01030 0.103 0.094 01972 01409 0.7 -0.400 -0,263 0.103 0.005 -3.889 -3.000 0.14b.1 0.9 0.9 100

0.100 0,003 0,110 0090 01.90\7t1 0.051 0.7 01000 0.005 0.10 0.089 0.000 0.052 0.0 0,0 1.0 1.0

0.100 0.127 0.099. 0.091 .14010 1..419 0,7 0.400 0.272 '0.099 0.082 4,042 3.310 0.2 0.2 0.0 0.9 100

0.400 0.289 0,100 0.092 44017 3.142 0.7 -0.400 -01249 0.100 0.083 *4.017 -2.985 0.2' 0.1 0.8 0.9 100

A AAA A "r1PA
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th 0 9" ,400-7-073,9 01 002.-"---0 070- 4 4 Ll.b0 '1 (.1 000 0t1.206 00-2-0-71 4 U60 4 4.041 0 ;-4-07;c1Tirvi/1" 007

.0,4 0;9 ,r0.700 0,,539 01004 -.0.001 0.340- 6.636 0.7 -01400 -0.235 0,004 0.074 -41766

0.4 OOP 01700 0,504 . 0.079 0.075 0.040 7.777 0.7 0.000 0.032 0,079 0.060 0.000

0:4 047 0.700 01629 0.039 0050 171001 , 12.655 0.7 01400 0.300 0.0,39. 0.045 10.172

0.4 0.9 .0,100 0.067 . 0.103 0,094 0.972 0.720 09 -01400 -0.340, 0.103 0.096 -3,009
..

0.4-0,9 01100 0.003 0.110 0.099 0,907 00133 01? 01000 0.0fJ 0.110 0.102 0,000

0.4 0,9 0.100 01090 0,099 01090 1.010 1.090 0.9 01400 0.361 0.099 0.093 4.042

.0.4 0.9 01400 0.316 0,M4 0,092 4.017 3.442 0.9 -0.400 70.330' 0.100 0.095 -4.017

0.4 0.9 0.400 0.332 0.102 0.093 31940 3.572 019 .0.000 0.025 0.102 0.096 0.000

014 019 0.400 0.347 0.002 04077 .4.060 4.510 0.9 0.400 0,379 04002 0.079 4,060

0.9 0:700 0.565 0.004 0.001 0.340 6.771 0.9 -0.400 -0.311 9,1.....004 0.003 -4,766

0.4 0,9' 0.700 0.500 0.079 0,076 0.040 7.615 ON' 0.000, 0.043 0.079 0.070 0.000

0.4 0.9 0.700 0.596 0.039 0.047 17.001 121793 019 0.400 0.397 0.039 0,640 10.172

-3.107 0.4 0.3 0.6 0.7 100

0.477 0.5 0.4 0.5 0.6 100'

6.640 049 0.7 0.1 0.3 100

-3.613 0.1 0.1 0,9 0.9 100

0.060 010 0.0 1N0 1.0 100

3.003-0.2 0.2 0.0 0.0 100

.-3..409 0.2 0:20.0

0.250 0.2 0.1 0.9

4.706 0.4 014 0,6

-3,734 0.4 0.3 0,6

0.549 0.5 0.4 0.5

0.294 0.9 0.0 0.1

0.9'100

0.9 100

0.6 100.

0.7100

0.6 100

0.2 100

NOTATION KEY,

RT12 - CORRELATION BETWEEN TRUE X1 AND TRUE X21 R11 - RELIABILITY or ODSERVED XI; TD1 - TRUE RhORESSION OF X1 ON YO
0111 ODSERVED REGRESSION OF.X1 ON YO STD1 - STANDARD ERROR roR TRUE Dl; 0001 - STANDARD ERROR FOR OBSERVED Dli
1-101 T VALUE FOR TRUE DI; '1-081 T VALucroR OBSERVED Dl; Rii - RELIABILITY OF TODSERVED X2;
TM.- TRUE REGRESSION or X2 ON VI. 002 ODSERVED REGRESSION or X2 ON Y; 0102 - STANDARD ERROR FOR TRUE D2;
0002 STANDARD ERROR FOR OSERVED 821 T-TDi I VALUC FOR TRUE Di; T-0D2 T VALUE FOR ODSERVED 021
RiT - SQUARED moLTIPLE CORRELATION- FOR TRUE SCORES; P20 - SQUARED MULTIPLE CORRELATION FOR OBSERVED SCORES;
VET - MEAN SQUARE ERROR FOR TRUE REGRESSION; VCO MEAN SQUARE ERROR roR ODSERVED REGRESSION; N - SAMPLE SIZE

NOTE1 'FOR ALL rARAMETERS DASED ON REPEATED DRAWINGS or SAMPLES. IX., STBI.0001.T-T01,1-7001-.8T02.5002,T-TD2,7-0B2p
VET, AND VED. A CONSTANT N or loo WAS ASSUMED, DIE .1 97 WAS USED IN ALL CALCULATIONS.

A FORTRAN COMPUTER PROGRAM FOR PERFORMING THESE KINDS OF CALUATIONS IS AVAILABLE FROM DR. NOEL DUNIVANT, ASSISTANT
PROFESSOR, PSYCHOLOGY DEPARTMENT, NEW YORK UNIVERSITY. 6 WASHINGTON PLACEr 7TH FLOOR. NEW YORK, NCW YORK 10003.



APPENDIX TO CHAPTER VI



I

G89K1309,LINES=66,NOLISTIMOWARN,NOEXT
DIMENSION STX421,2J85YU(2,2),T8(2/gSVU(21

-4 -INITIALIZE FIXED PARAMEERS
DO 5 L=1,2
STX4I0Ii=1.0

5 SVUII)=0.0
STY=1.0
SVV040.0
SOU41,21 0.0
SUU(2t1)=0.0

. N=100
READ INPUT TRUE PARAMETERS AND OBSERVED RELIABILITIES

. READ0,101/-S12L0,512HI,512N,R11LO,R11HIgRI1N,R22LOgR22H14
tR22N411.0951N1 ,B1Ng82L0,82111032N

101 FORMATII5F5.04
WRITE4641024

102 FORMATI1M1/
SI2INC=IS12MIS12L0)/ISL2N-1/
STXt112/=S121.0512INC
RIIINC=1R111.117-R11LOUIR1INII
R11.0=R1ILO-AIIINC
R22INC=IR22HIR22LWAR22N-1/
R220=R22L0-11221NC

TBL0=BILQB1INC
6iINC=032H1-62L0.1/182N-11
TB24=B2LOB2INC
NSI2=S12N
NRII=RI1N
NR22=R22N-
NBI=B1N
N82=62N
00 26 I=14NS12-
STX(1,2)=STXIIi2)4.512ING
STX12,1/=STX(1.2)
pp 20 J=14NRI1
IF(J.EQ.1)R11=R110
RII=R11 RIIINC
SUU(1,1)=ISTX(1,1/RI1*STX(1,1))/Rli
DO 20 K=1,NR22
-IFIK.E0.11R22=R220
R22=R2244122INC
SUU(2,2)=(STX(2,21R22*STX(2,21//R22
DO 20 L=1,NB1
IFIL.E0;1/TB(1)=TBIO
TB(1)=T8(1)+151INC
DO 20 M=1,NB2
IFI.M.EQ.IITBI2)=TB20
TB(21=111t2)4.82INC
CALL REGRES(STX,SUUiTB,STY,SVV,SVU.R11,R220),

20° CONTINUE
STOP
END
SUBROUTINE REGRES(STX,SUUsTB,STY,SVV#SVU011,R22,NI
DIMENSION STX12,24..SUU(2,24T5(2),5VUt2),STXINV(2,2/4STB(i2.2)
toTTI2I,S0X(2,2),STYX1244SOXINV(2',2),SOYX42/,SOB(2,2),
g08 (2),OT(24,41STB(2) 400812/'
2N=N
COMPUTE TURE....SCORE PARAMETERS
COMPUTE R SQUARE TRUE
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CALL QYADFITB,STXeRSQJ
R2TY*RSO/STY'i
COMPUTE MSE T(&UE
OF=214.3
STESTY*IZNOFS*41-R2T1
COMPUTE TRUE A VECTOR
CALL MINVI$TXSSIXIN4)--
176 5 1=142
DO 5 4=112

5 STB(114)=STE*(1/214)*STANV(I,J/
COMPUTE.TRUE T-TESTS
DO 10 1=1,2
OSTBII)=SORTISTB(11,I)/

10 TTtI)=TBIIIJOSTBII1
C COMPUTE STYX TRUE YX COVARIANCE VECTOR

CALL MVMAT(STX,TBiSTYX)
-1C .COMPUTE OBSERVED-SCORE PARAMETERS

COMPOTE SOX SIGMA OF OBSERVED SCORES
D011 14=1,2

,Db 11 4=112
11 SOX(1444=STXII,J1+SUUtI,J1

COMPUTE SOXINV .

CALL MINV(SOXIPSOXINV)
C COMPUTE OBSERVED YX COVARIANCE VECTOR

DO 15 I=1,2
,15 SOY 11=STYX(II+SVI(I)

CO UTE'OBSERVED-SCORE REGRESSION VECTOR
.0 LL MVMAT(SOXINV,SOYX40B)
OMPUTE OBSERVED Y VARIANCE

SOY=STY + SVV
COMOUT E OBSERVED R SQUARE
CALL.QUADF(OB,SOX,RSQ)
R20Y=RSQ/SOY
COMPUTE SOE MSE FOR OBSERVED SCORES
SOE=SOY*I.ZN/DF)*(1-R20Y)
COMPUTE SIGMA OF OBSERVED B VECTOR

'A30 20 I=1,2
020.4=1,2

20 SOBII,4)=SOE*11/ZNI*SOXINV(I,J)
COMPUTE OBSERVED T-TESTS
Da.25 1=1,2
OSOBIII=SQRTISOB(I,I))

2$ 01(1)=OBIII/QSOBLII
WRITE(69100/STX(192)1R11,TBI1/0Bi1t,OSTBI1I2QSOB(1),TT(1),OT(1),
fR22,78(21,08(2).,ASTB(2),CSOBL2),TT(2) 0T(2),R2TY;FR20Y,

IPSTE,SOEtN
100 FORMAT11X,1F4.1,1X,1F3.1.1X,4(1F7.3;1X),2(1F8.3,1X),IF3.10

04(1F7.4,11X),2t1f8.391X),4(1F3.1,1X)11133
RETURN
STOP
END/
.SUBROUTINE AVMATIX,BIXBI
MATRIX-VECTOR pRoDucT

-

DIMENSION X12,210121,X8(2/_
.D0 5 1=142
XS(I)=0.0
,00 -5'4=142

5_XBI11=X8(1)+B(Jf*XIJ,II
RETURN A ':

410P
END 171



ISUBROUTTNE MINVIXIXIhY)
INYERT'A 2X2 MATRIX
DIMENSION X(2,2),XINVI2v2I
01*Xtivii*X12,21-4( lt2)*X12,1J
XINVilv1i=X(2,2)/D
XIN11(2,2)*X41,11/0
XINVI1,23-X41,21/D
XINY12,1)*XIAY11.2)
RETURN
STOP
END
SUBROUTINE QUADF(8,S.RSQ)

,
COMPUTE A QUADRATIC FORM: RSQ = 81 * S * 8

DIMENSION B(21,S(2.23,Y(2)
DO 5 J*1.2
'Y(Jk=0.0
DO 5 K=1.2

5 YIJ)*Y(.1) + B(K)*S(KIFJ).

DO 6 JaltZ
6 RSQ*Y(J)*8(J)

RETURN
STOP
END

$ENTRY
-.4 .4 2 .65 .85 2 .7 q,9 2 .1 .9 3 -.5 .5 3

$STOP
/*
//
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